博碩士論文 992204021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.142.248
姓名 黃薇羽(Wei-yu Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 蛋白質激酶A以及蛋白質激酶Cɛ在急性轉換至慢性發炎性疼痛中扮演的角色
(Roles of Protein Kinase A and Protein Kinase Cε in the Transition from Acute to Chronic Inflammatory Pain)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度★ 台灣海岸植物之內生真菌多樣性研究
★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號
★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P
★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 尋找有效治療慢性發炎性疼痛是目前臨床研究上重要的課題。組織受損釋放大量發炎介質引起的發炎反應常常會伴隨著持續性以及慢性疼痛的發生。發炎介質會透過蛋白質激酶A以及蛋白質激酶Cɛ活化痛覺相關神經元 (nociceptor),引發痛覺過敏感行為。在前人研究中指出,在預發炎的模式中 (priming model) 蛋白質激酶Cɛ可能扮演關鍵的角色在轉換急性疼痛至慢性發炎性疼痛中。但另外利用發炎介質引發持續性的疼痛研究中發現蛋白質激酶A同時與蛋白質激酶Cɛ共同參與在急性以及慢性疼痛中,因此蛋白質激酶A以及蛋白質激酶Cɛ在實際上的發炎反應從開始急性痛到慢性發炎性疼痛的過程中是如何參與以及透過何種機制調控是目前尚未明瞭的課題,因此我藉由長期 (完全弗氏佐劑)、短期 (海藻醣)、神經內源性 (辣椒素) 發炎模式,在發炎反應的不同時間下注射蛋白質激酶A以及蛋白質激酶Cε抑制劑來探討蛋白質激酶A以及Cε參與那些階段下,以及他們透過何種路徑調控急性疼痛以及慢性疼痛之間的轉換。在長期以及短期模式中,抑制蛋白質激酶A只可以降低前期 (1-3小時) 發炎性疼痛,但抑制蛋白質激酶Cɛ可以降低後期 (4小時至16天),因此推測這樣的蛋白質激酶主導由短期疼痛轉換至長期疼痛的機制主要介於發炎後3-4小時間。在辣椒素引發的短期神經內源性發炎反應中,機械性痛覺過敏只可以受抑制蛋白質激酶Cɛ所減緩,然而熱痛覺過敏感可同時受蛋白質激酶A以及蛋白質激酶Cɛ抑制劑所降低。在神經內源性發炎反應中並無顯著的激酶主導轉換,利用定量聚合酶鏈鎖反應分析發炎後酸敏感G蛋白偶和受體基因變化,發現發炎初期抑制蛋白質激酶A活性會促使G2A基因表現增加,發炎後一天TDAG8基因表現增加的現象可以受蛋白質激酶Cɛ抑制劑作用而降低。
摘要(英) The treatment of chronic inflammatory pain continues to be a major management challenge in clinical practice. Inflammation induced by tissue injury release inflammatory mediator often accompanies persistent and chronic pain. Inflammatory mediators activate protein kinase A (PKA) or protein kinase Cε (PKCε) to sensitize pain-related nerve fibers (nociceptors), inducing behavioral hypersensitivity. Some studies have demonstrated that PKCε plays a critical role in the transition from acute to chronic pain using “hyperalgesic priming” model. However it remains unclear whether PKA is involved in such transition, when the transition occurs and what is the molecular mechanism. To address these questions, I have used three (sub-chronic, chronic, neurogenic) inflammatory pain models to explore the roles of PKA and PKCε in the transition from acute to chronic pain. In both subchronic (carrgeenan) and chronic (CFA) models, inhibiting PKA activity reduced mechanical hyperalgesia in the early state (1-3 hours), but PKCε regulated mechanical hyperalgesia in the late state (4-24 hours). The kinase-dependent swithching time was at 3-4 hours, suggesting that the transition from acute pain to chronic pain is around 3-4 hours after inflammation. In a neurogenic model, inhibition of PKCε slightly reduced capsaicin-induced mechanical hyperalgesia but not PKA. Both PKA and PKCɛ can regulate capsaicin-induced thermal hyperalgesia. Blocking PKC reduced CFA -enhanced TDAG8 gene expression. Pretreatment of PKA inhibitor enhance G2A gene expression at initiation after CFA induced inflammation.
關鍵字(中) ★ 發炎性疼痛
★ 痛覺過敏感
★ 慢性疼痛
★ 蛋白質激酶A
★ 蛋白質激酶Cɛ
關鍵字(英) ★ Inflammatory pain
★ Hyperalgesia
★ Chronic pain
★ PKA
★ PKCɛ
論文目次 目錄
中文摘要……………………………………………………….….i
英文摘要…………………………………………………………..ii
目錄……………………………………………………………….iii
圖目錄…………………………………………………................. vii
附圖目錄……………………………………………………….…..ix
表目錄………………………………………………………..x

第一章 緒論 1
1.1痛覺 (Pain) 2
1.2痛覺傳遞路徑 (Nociceptive pathway) 3
1.3發炎性疼痛 (Inflammatory pain) 4
1.3.1神經可塑性 (Neuroplasticity) 5
1.3.2發炎介質 6
1.3.3激酶 8
1.3.4受體 10
1.4發炎動物模式 13
1.4.1完全弗氏佐劑 (Complete Freund’s Adjuvant) 13
1.4.2海藻醣 (Carrgeenan) 13
1.4.3神經內源性 14
1.4.4 預發炎模式 (Priming model) 14
1.5研究動機與目的 16
第二章 材料與方法 17
2-1 實驗材料 18
2-1-1 實驗小鼠 18
2-1-2 藥品 18
2-2 實驗方法 19
2-2-1 發炎性疼痛動物模式 19
2-2-2 痛覺行為測試 19
2-2-3 RNA萃取-微量組織 20
2-2-4 cDNA合成 21
2-2-5 染色體DNA (genomic DNA) 污染檢測 21
2-2-6 聚合酶鏈鎖反應分析(Reverse transcription-PCR,RT-PCR) 22
2-2-7 瓊酯膠電泳製備及電泳分析 22
2-2-8 統計分析 22
第三章 結果 24
3.1 小鼠皮下注射海藻醣及完全弗氏佐劑引發中長期機械性痛覺過敏感現象 25
3.2 皮下注射完全弗氏佐劑引發發炎反應24小時後引發同側腳掌腫脹不會受PKA以及PKCɛ抑制劑所減緩 25
3.3抑制蛋白質激酶A可以降低弗氏完全佐劑所引起的機械性痛覺過敏感前期(0~4小時)而抑制蛋白質激酶Cɛ可以減緩後期 (>4 Hours)痛覺過敏現象 26
3.4 抑制蛋白質激酶A可以降低海藻醣所引起的機械性痛覺過敏感前期而抑制蛋白質激酶Cɛ可以減緩後期痛覺過敏現象 27
3.5抑制腺苷酸環化酶活性可以降低完全弗氏佐劑以及海藻醣所引起的機械性痛覺過敏感前期 (0~4小時) 而抑制磷酯酶以及百日咳毒素活性可以減緩後期 (>4 Hours) 痛覺過敏現象 28
3.6 皮下注射完全弗氏佐劑所會引起長持續的熱痛覺過敏感現象的熱痛覺過敏感現象 30
3.7 抑制蛋白質激酶A及蛋白質激酶Cɛ活性可以減緩完全弗氏佐劑所引起的熱痛覺過敏感現象 30
3.8蛋白質激酶Cɛ抑制劑可以降低辣椒素所引起的機械性痛覺異常現象,但蛋白質激酶A抑制劑不能 31
3.9 蛋白質激酶A抑制劑及蛋白質激酶Cɛ抑制劑可以降低辣椒素所引起的熱痛覺過敏感現象 31
3.10 完全弗氏佐劑引發發炎反應後G2A以及TDAG8基因表現增加 32
3.11完全弗氏佐劑與注射蛋白質激酶A抑制劑同時注射後90分鐘G2A基因表現增加 32
3.12發炎反應後4小時注射蛋白質激酶A以及蛋白質激酶Cε抑制劑不會影響OGR1家族基因表現變化 33
3.13抑制蛋白質激酶Cɛ活性降低TDAG8基因表現在完全弗氏佐劑引發發炎反應後1天 33
第四章 討論 34
4.1 慢性發炎引發機械性痛覺過敏感 35
4.2 蛋白質激酶A以及蛋白質激酶Cε交替參與完全弗氏佐劑引發長期機械性疼痛 36
4.2.1 發炎初期(0~3小時) 37
4.2.2發炎中期至後期(4小時-16天) 37
4.3 G蛋白轉換參與調節發炎性疼痛 38
4.4蛋白質激酶A以及蛋白質激酶Cε參與調控完全弗氏佐劑引發熱痛覺過敏 39
4.5辣椒素引發的神經內源發炎反應透過蛋白質激酶Cε調節機械痛覺過敏 40
4.6 CFA引發的發炎性疼痛可以透過PKCε調節TDAG8 41
4.7總結 42
第五章 參考文獻 43

參考文獻 Aley KO, Levine JD. (1999) Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci.;19(6):2181-6.
Aley KO, Messing RO, Mochly-Rosen D, Levine JD. (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci. 2000 ;20(12):4680-5.
Aley KO, Martin A, McMahon T, Mok J, Levine JD, Messing RO. (2001) Nociceptor sensitization by extracellular signal-regulated kinases. J Neurosci.
;21(17):6933-9.
Basbaum AI, Bautista DM, Scherrer G, Julius D. (2009) Cellular and molecular mechanisms of pain. Cell.;139(2):267-84.
Bhave G, Gereau RW. (2004) Posttranslational mechanisms of peripheral sensitization. J Neurobiol. 61(1):88-106.
Bolick DT, Whetzel AM, Skaflen M, Deem TL, Lee J, Hedrick CC. (2007) Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circ Res. 2;100(4):572-80.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature ;389(6653):816-24
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. (2000) Science , 288:306-313.

Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA. (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron. ;23(3):617-24.
Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA. (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron. ;23(3):617-24.
Chen CC, England S, Akopian AN, Wood JN. (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A.; 95(17):10240-5.
Chen YJ, Huang CW, Lin CS, Chang WH, *Sun WH. (2009) Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Molecular Pain 5, 39.
Colpaert, F. C. (1987) Evidence that adjuvant arthritis in the rat is associated with chronic pain, Pain 28, 201–222.
Cook SP, McCleskey EW. (2002)Cell damage excites nociceptors through release of cytosolic ATP. Pain; 95(1-2):41-7.
Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G,
McMahon SB, Ford AP.(2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature;407(6807):1011-5.
Cook SP, McCleskey EW. (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain. ;95(1-2):41-7.
Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. ;405:183 187.10.1038/35012076.
Decaris E, Guingamp C, Chat M, Philippe L, Grillasca JP, Abid A, Minn A, Gillet P, Netter P, Terlain B. (1999) Evidence for neurogenic transmission inducing degenerative cartilage damage distant from local inflammation. Arthritis Rheum.;42(9):1951-60.
Deval E, Noël J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E. (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J.;27(22):3047-55.
Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E. (2010) Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther; 128(3):549-58.
Dray A, Urban L, Dickenson AH.(1994) Pharmacology of chronic pain. Trends Pharmacol Sci; 15:190–197
Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL. (2007) Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci. ;27(41):11139-48.
England S, Bevan S, Docherty RJ. (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol. ;495 ( Pt 2):429-40.
Gilchrist, H. D., Allard, B. L., and Simone, D. A.(1996) Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats, Pain 67, 179–188.
Gold MS, Levine JD, Correa AM. (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci. ;18(24):10345-55.
Hamilton SG, Wade A, McMahon SB. (1999) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol. ;126(1):326-32.
Huang, CW, Tzeng, JN, Chen, YJ, Tsai, WF, Chen, CC, and *Sun, WH. (2007) Nociceptors of dorsal root ganglion express proton-sensing G protein-coupled receptors. Mol. Cell. Neurosci. 36, 195-210.
Hou, C. Kirchner, T. Singer, M.Matheis, M. Argentieri, D. Cavender, D.(2003)
In vivo activity of a phospholipase C inhibitor, (U73122), in acute and chronic inflammatory reactions. J Pharmacol Exp Ther;309(2):697-704
Iadarola, M. J., Brady, L. S., Draisci, G., and Dubner, R. (1988) Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding, Pain 35, 313–326
Julius D, Basbaum AI. (2001) Molecular mechanisms of nociception. Nature. 413(6852):203-10. Review
Kawabata (2011) Prostaglandin E2 and Pain—An Update. Biol. Pharm. Bull. 34(8) 1170—1173
Khasar SG, Gold MS, Levine JD. (1998) A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat. Neurosci Lett.;256(1):17-20
Khasar SG, McCarter G, Levine JD. (1999) Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol. 1999 ;81(3):1104-12
Khasar SG, Lin YH, Martin A, Dadgar J, McMahon T, Wang D, Hundle B, Aley KO, Isenberg W, McCarter G, Green PG, Hodge CW, Levine JD, Messing RO. (1999) A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice.
Khasar SG, Burkham J, Dina OA, Brown AS, Bogen O, Alessandri-Haber N, Green PG, Reichling DB, Levine JD.(2008) Stress induces a switch of intracellular signaling in sensory neurons in a model of generalized pain. J Neurosci ;28(22):5721-30.
Kidd BL, Urban LA.( 2001) Mechanisms of inflammatory pain. Br J Anaesth. Jul;87(1):3-11. Review.
Kress M, Reeh PW, Vyklicky. (1997) An interaction of inflammatory mediators and protons in small diameter dorsal root ganglion neurons of the rat. Neurosci Lett. ;224(1):37-40
Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K. H. (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93-98
Malmberg AB, Brandon EP, Idzerda RL, Liu H, McKnight GS, Basbaum AI. (1997) Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neurosci ;17:7462–70.
Millan, M. J., Czlonkowski, A., Morris, B., Stein, C., Arendt, R., Huber, A., Hollt, V.,
and Herz, A. (1988) Inflammation of the hind limb as a model of unilateral, localized
pain: influence on multiple opioid systems in the spinal cord of the rat, Pain 35, 299–312.
Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Murakami N, Yokomizo T, Okuno T, Shimizu T. (2004) G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem.; 279:42484–42491.
Nagakura Y, Okada M, Kohara A, Kiso T, Toya T, Iwai A, Wanibuchi F, Yamaguchi T. (2003) Allodynia and hyperalgesia in adjuvant-induced arthritic rats: time course of progression and efficacy of analgesics. J Pharmacol Exp Ther.;306(2):490-7
Parada CA, Yeh JJ, Reichling DB, Levine JD. (2003) Transient attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in the rat. Neuroscience. ;120(1):219-26.
Reeh PW, Steen KH.Tissue acidosis in nociception and pain. Prog Brain Res. 1996;113:143-51. Review.
Sachs D, Villarreal C, Cunha F, Parada C, Ferreira Sh.(2009) The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol. ;156(5):826-34.
Souza AL, Moreira FA, Almeida KR, Bertollo CM, Costa KA, Coelho MM. (2002) In vivo evidence for a role of protein kinase C in peripheral nociceptive processing. Br J Pharmacol. ;135(1):239-47.

Scholz J, Woolf CJ.(2002) Can we conquer pain? Nat Neurosci. Suppl:1062-7. Review
Steen KH, Reeh PW. (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin.
Taiwo YO, Levine JD, Burch RM, Woo JE, Mobley WC. Hyperalgesia induced in the rat by the amino-terminal octapeptide of nerve growth factor. Proc Natl Acad Sci U S A. 1991;88(12):5144-8.
Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, 21:531-543.
Tominaga M. (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. ;1:3.
Vellani V, Zachrisson O, McNaughton PA. (2004)Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol.;560(Pt 2):391-401.
Villarreal, C. F. Funez, M. I. Figueiredo, F. Cunha, F. Q. Parada, C. A.Ferreira, S. H. (2009) Acute and persistent nociceptive paw sensitisation in mice: the involvement of distinct signalling pathways. Life Sci.;85(23-26):822-9
Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R. (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology. ;36(9):1229-42.

Vinegar, R., Schreiber, W., and Hugo, R.(1969) Biphasic development of carrageenin
edema in rats, Journal of Pharmacology and Experimental Therapeutics 166, 96–103.
Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G,
Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F. (2004) TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem. 279(44):45626-33.
Waldmann R, Champigny G, Lingueglia E, De Weille JR, Heurteaux C, Lazdunski M.
Ann N Y. (1999) H(+)-gated cation channels.Acad Sci. 868:67-76. Review.
Waldmann R. (2001) Proton-gated cation channels--neuronal acid sensors in the central and peripheral nervous system. Adv Exp Med Biol.; 502:293-304.
Woolf CJ, Salter MW. (2000) Neuronal plasticity: increasing the gain in pain. Science. 2000 Jun 9;288(5472):1765-9.
Yen YT, Tu PH, Chen CJ, Lin YW, Hsieh ST, Chen CC. (2009) Role of acid-sensing ion channel 3 in sub-acute-phase inflammation Mol Pain 5: 1.
Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, Wan Y. (2008) The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol Pain.;4:61.
Zamponi GW, Feng ZP, Zhang L, Pajouhesh H, Ding Y, Belardetti F, Pajouhesh H, Dolphin D, Mitscher LA, Snutch TP. (2009) Scaffold-based design and synthesis of potent N-type calcium channel blockers. Bioorg Med Chem Lett. ;19(22):6467-72
Zhang X, Li L, McNaughton PA.(2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron. ;59(3):450-61
Zhang X, Li L, McNaughton PA. (2008) Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron. ;59(3):450-61
Zhou Yu, Li Guo-Dong, Zhao Zhi-Qi.(2003) State-dependent phosphorylation of e-isozyme of protein kinase C in adult rat dorsal root ganglia after inflammation and nerve injury. Journal of Neurochemistry, 85, 571–580.
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2012-12-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明