參考文獻 |
[1] T. A. Edison, “Improvement in electric lights,” US Patent No. 214,636 (1878).
[2] S. M. Sze, Semiconductor Devices : Physics and Technology, 258-267 (John Wiley & Sons, Inc., New York, 1985).
[3] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 1st ed., 592-609 (John Wiley & Sons, Inc., New York, 1991).
[4] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, New York, 2006).
[5] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[6] E. E. Loebner, “Subhistories of the light emitting diode,” IEEE Trans. Electron Devices ED-23, 675-699 (1976).
[7] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[8] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, and M. G. Craford, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[9] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/ GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[11] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, I. Akasaki, “Effect of AlN buffer layer on AlGaN/α-Al2O3 heteroepitaxial growth by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[12] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Ser. 91, 633-636 (1988).
[13] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0
[14] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112-L2114 (1989).
[15] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effets on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[16] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
[17] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
[18] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[19] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[20] S. Nakamura, T. Mukai, and N. Iwasa, “Light-emitting gallium nitride-based compound semiconductor device,” US Patent No. 5,578,839 (1996).
[21] Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” US Patent No. 5,998,925 (1999).
[22] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[23] M. G. Craford, “LEDs for solid state lighting and other emerging applications : status, trends, and challenges,” Proc. SPIE 5941, 594101-1:10 (2005).
[24] 孫慶成,LED的效率極限與照明設計的極致,2009固態照明研討會,國立中央大學,中華民國九十八年。
[25] N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE 3938, 240-248 (2000).
[26] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (John Wiley & Sons, New York, 2002).
[27] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[28] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[29] F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[30] Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, by US Department of energy.
[31] D. Sun, “Challenges and opportunities for high power white LED development,” DOE SSL R&D Workshop (2012).
[32] Cree, Inc., http://www.cree.com/news-and-events/cree-news/press-releas es/ 2009/december/091201-186-lumens-per-watt.
[33] Cree, Inc., http://www.cree.com/news-and-events/cree-news/press-releas es/ 2011/may/110509-231-lumen-per-watt.
[34] J. Y. Tsao, Light emitting diodes (LEDs) for general illumination : an OIDA technology roadmap update 2002 (OIDA, Washington, D. C., 2002).
[35] X. S. Liu, A. Vedlitz, and L. Alston, “Regional news portrayals of global warming and climate change,” Environ. Sci. Policy 11, 379-393 (2008).
[36] International Energy Agency, Light’s labour’s lost : policies for energy- efficient lighting (OECD/IEA, Paris, 2006).
[37] 林憲德、趙又嬋,都是愛迪生惹的禍 : 光害,新自然主義有限公司,中華民國九十八年。
[38] P. Cinzano, F, Falchi, and C. D. Elvidge, “The first world atlas of the artificial night sky brightness,” Mon. Not. Roy. Astron. Soc. 328, 689-707 (2001).
[39] M. McColgan, “Light Pollution,” NLPIP Lighting Answers 7, 1-20 (2007).
[40] J. C. Stover, Optical Scattering : Measurement and Analysis (McGraw -Hill, New York, 1990).
[41] Entire Technology Co., Ltd., http://www.entire.com.tw/about1.html.
[42] Bayer MaterialScience AG, http://www.materialscience.bayer.com/.
[43] Luminit Co., http://www.luminitco.com/.
[44] RPC Photonics, Inc., http://www.rpcphotonics.com/.
[45] T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42, 3084-3085 (2003).
[46] T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109-120 (2003).
[47] T. R. M. Sales, “High-contrast screen with random microlens array,” US Patent No. 6,700,702 (2004).
[48] T. R. M. Sales, S. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusersTM,” Proc. SPIE 5530, 133-140 (2004).
[49] V. N. Mahajan, Optical imaging and aberrations : part I. ray geometrical optics (SPIE press, Bellingham, 1998).
[50] S. Ulam, R. D. Richtmyer, and J. von Neumann, “Statistical methods in neutron diffusion,” Los Alamos Scientific Laboratory report LAMS-551 (1947).
[51] N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949).
[52] W. B. Joyce, R. Z. Bachrach, R. W. Dixon, and D. A. Sealer, “Geometrical properties of random particles and the extraction of photons from electroluminescent diodes,” J. Appl. Phys. 45, 2229-2253 (1974)
[53] D. Z. Y. Ting and T. C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545- 3553 (1995).
[54] Breault Research Organization, Inc., http://www.breault.com/index.php.
[55] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[56] J. W. Goodman, Introduction to Fourier optics, 2nd ed. (McGraw-Hill, 1996).
[57] C. C. Sun, I. Moreno, S. H. Chung, W. T. Chien, C. T. Hsieh, and T. H. Yang, “Brightness management in a direct LED backlight for LCD TVs,” J. Soc. Inf. Disp. 16, 519-526 (2008).
[58] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
[59] X. H. Lee, C. C. Lin, Y. Y. Chang, H. X. Chen, and C. C. Sun, “Power management of direct-view LED backlight for liquid crystal display,” Opt. Laser Technol. 46, 142-144 (2013).
[60] Evonik Industries AG, http://corporate.evonik.com/en/Pages/default.aspx.
[61] F. Costa, L. Costa, and L. Gini, “Optical articles and sol-gel process for their manufacture,” World Intellectual Property Organization WIPO, WO 2004/083137 A1 (2004).
[62] The making of SAVOSIL®, Evonik Industries AG, http://www.savos il.com/product/savosil/en/products/making-of-savosil/pages/default.aspx.
[63] Regatech Co., http://www.regatech.com/e1.htm.
[64] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, ""Surface-structured diffuser by iterative down-size molding with glass sintering technology,"" Opt. Express 20, 6135-6145 (2012).
[65] Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
[66] J. W. Pan, S. H. Tu, W. S. Sun, C. M. Wang, and J. Y. Chang, “Integration of non-Lambertian LED and reflective optical element as efficient street lamp,” Opt. Express 18, A221-A230 (2010).
[67] J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik 121, 1761-1765 (2010).
[68] S. Magarill, “Skew-faceted elliptical reflector,” Opt. Lett. 36, 532-533 (2011).
[69] R. Mullner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” International Journal of Pervasive Computing and Communications 7, 147-161 (2011).
[70] S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
[71] C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE 8123, 812307 (2011).
[72] A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” Journal of Environmental Psychology 32, 342-352 (2012).
[73] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52, 889-893 (2012).
[74] Illuminating Engineering Society of North America, The IESNA Lighting handbook : reference and application, 9th ed. (IESNA, New York, 2000).
[75] Cree XLamp XP-E LED, http://www.cree.com/led-components-and-modu les/products/xlamp /discrete-directional/xlamp-xpe.
[76] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[77] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
[78] A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optimiz. 40, 47-65 (2008).
[79] E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002).
[80] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer-Verlag, New york, 2000).
[81] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[82] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971).
[83] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[84] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[85] L. Young, W. K. Y. Wong, M. L. W. Thewait, and W. D. Cornish, “Theory of formation of phase holograms in lithium niobate,” Appl. Phys. Lett. 24, 264-265 (1974).
[86] G. A. Alphonse, R. C. Alig, D. L. Staebler, and W. Philips, “Time-dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials,” RCA Rev. 36, 213 (1975).
[87] D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85-100 (1975).
[88] D. M. Kim, R. R. Shah, T. A. Rabson, and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28, 338-340 (1976).
[89] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[90] J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297-1305 (1980).
[91] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I: Fundamental Phenomena (Spring-Verlag, New York, 1988).
[92] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications II: Materials (Spring-Verlag, New York, 1989).
[93] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[94] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303- 1311 (1966).
[95] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[96] D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70-76 (1995).
[97] P. Asthana nd B. Finkelstein, “Superdense optical storage,” IEEE Spectrum 32, 25-31 (1995).
[98] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
[99] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471-1473 (1992).
[100] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[101] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[102] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[103] J. T. LaMacchia and D. L. White, “Coded multiple exposure holograms,” Appl. Opt. 7, 91-94 (1968).
[104] C. C. Sun, R. H. Tsou, W. C. Chang, J. Y. Chang, and M. W. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Opt. Quantum Electron. 28, 1551-1561 (1996).
[105] C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[106] C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[107] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[108] C. C. Sun, W. C. Su, Y. N. Lin, Y. OuYang, S. P. Yeh, and B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical reference waves,” Opt. Mem. Neural Networks 8, 229-235 (1999).
[109] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
[110] L. C. Tang, G. W. Hu, K. L. Russell, C. S. Chang, and C. C. Chang, “Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal,” Proc. SPIE 4110, 270-276 (2000).
[111] C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phased-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[112] W. C. Su and C. H. Lin, “Enhancement of the angular selectivity in encrypted holographic memory,” Appl. Opt. 43, 2298-2304 (2004).
[113] W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in a double random phase encoding holographic memory,” Opt. Commun. 241, 29-41 (2004).
[114] C. C. Sun, C. Y. Hsu, S. H. Ma, and W. C. Su, “Rotation selectivity of random phase encoding in volume holograms,” Opt. Commun. 276, 62-66 (2007).
[115] S. H. Ma, X. H. Lee, T. C. Teng, Y. W. Yu, and C. C. Sun, “Enhanced rotational bragg selectivity by use of random phase encoding in volume holographic filter,” Appl. Opt. 46, 5430-5434 (2007).
[116] M. Z. He, Q. F. Tan, L. C. Cao, Q. S. He, and G. F. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17, 22462-22473 (2009).
[117] J. H. Li, M. Z. He, T. X. Zheng, L. C. Cao, Q. S. He, and G. F. Jin, “Two-dimensional shift-orthogonal random-interleaving phase-code multiplexing for holographic data storage,” Opt. Commun. 284, 5562-5567 (2011).
[118] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003). |