博碩士論文 983202021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.216.99.18
姓名 鄭育如(Yu-Ju Cheng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋼筋混凝土構件之敲擊應力波斷層掃描法
(Impact Stress Wave Tomography of Reinforced Concrete Components)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 斷層掃描(Tomography)是利用外來不具破壞性的探測能量,通過待測物體得到量測反應,藉由反應結果對待測物剖面進行成像的技術。本論文選擇以震波斷層掃描中的級數展開法作為理論基礎,其理論可分為正算模式與反算模式兩大部分。正算模式使用格點方塊模型搭配二維線性走時內差(Linear Traveltime Interpolation method, LTI)法作為計算波行路徑的方法。而反算模式則選擇速度分布之聯立疊代重建(SIRT)法反求待測試體斷面的波速分布。兩者搭配結合成一個完整的二維斷層掃描法。
對於土木工程結構物而言,由於鋼筋混凝土的高度非均質性造成應力波在試體內部傳遞行為複雜,會影響檢測結果的正確性及準確性。因此本文藉由數值模擬與實驗室試驗的方式進行研究。數值模擬方面,二維斷層掃描程式可以成功計算出試體斷面的波速分布,順利地對試體進行顯像。實驗室試驗方面,使用敲擊鎚做為應力波發射源,並採用壓電式位移探頭作為觸發裝置。根據前人研究之經驗,利用鋼筋混凝土組成物(鋼筋、混凝土與孔洞)之波速皆有其固定範圍的概念改善顯像解析度,研究成果顯示,可有效地將試體內鋼筋位置與孔洞分布情形顯現出來。
摘要(英) Tomography is an inner image technique which generates a cross sectional picture of an object by utilizing the object’s response to the nondestructive, probing energy of an external source. In this thesis, the series expansion method of tomography was selected to develop a nondestructive evaluation technique for reinforced concrete components. In general, the tomography analysis contains two different procedures. The first one is the forward modeling for a given wave propagation structure. The forward modeling uses the ray tracing technique in order to simulate the curved ray path through the medium. The second is the inversion for updating the wave propagation structure. The ray tracing technique, linear traveltime interpolation (LTI) method which is selected to combine with simultaneous iterative reconstruction technique (SIRT) to develop a computational tomography (CT) scheme for reinforced concrete (RC) components.
Numerical simulations verify that the feasibility and performance of this 2-D CT scheme for RC components are acceptable. In order to make the image more clear and improve the image contrast of the CT calculation for RC component, taking that only three levels of wave speed in a RC component: steel bar, concrete and void.
In the laboratorial testing, an impact hammer is used to generate stress wave, and a piezoelectric displacement sensor is used as the trigger device for signal acquisition. Experimental results show that computed images also can identify the sizes and position of voids, the position of steel bar inside a simple RC component quite well.
關鍵字(中) ★ 斷層掃描
★ 鋼筋混凝土
★ 非破壞檢測
★ 線性走時內差法
關鍵字(英) ★ tomography
★ reinforced concrete
★ ray tracing
★ traveltime
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究方法 7
1.4 論文架構 8
第二章 斷層掃描之原理方法 9
2.1 斷層掃描基本原理 9
2.1.1 轉換法(Transform method) 10
2.1.2 級數展開法(Series Expansion method) 12
2.2 應力波斷層掃描於混凝土結構 14
2.3 正算模式(Forward Modeling)的介紹 15
2.3.1 傳統的方法-打靶法(Shooting method)與彎曲法(Bending method) 16
2.3.2 惠更斯原理法(Huygen’s Principle method) 18
2.3.3 正-反向法(Forward-backward method(Vidale’s Approach)) 19
2.3.4 費馬最短走時定理(Fermat’s Principle) 20
2.3.5 互易原理法(Reciprocity Principle method) 20
2.3.6 最短路徑法(Shortest Path method) 21
2.3.7 線性走時內差法(Linear Traveltime Interpolation method, LTI) 21
2.4 反算方法的介紹 22
2.4.1 射線軌跡走時逆算法(Travel-time Inverse via Ray Tracing method) 23
2.4.2 阻尼最小二乘法(Damped Least Squares Solution, DLSS) 25
2.4.3 DLS Plus Averaging Smoother Solution 25
2.4.4 卷積消制法(Convolutional Quelling Solution) 25
2.4.5 正規化最小二乘法(Regularized Least Squares Solution, RLSS) 26
2.4.6 Kaczmarz’s method 26
2.4.7 速度分布之代數重建法(Algebraic Reconstruction Technique method, ART) 32
2.4.8 速度分布之聯立疊代重建法(Simultaneous Iterative Reconstruction Technique method, SIRT) 34
第三章 二維線性走時內差法之理論 37
3.1 基本觀念 37
3.2 二維理論 38
3.2.1 二維線性走時內差法理論 38
3.2.2 二維線性走時內差法之前算程序(Forward Process) 42
3.2.3 二維線性走時內差法之回算程序(Backward Process) 45
3.3 二維斷層掃描程式的運算流程 47
3.3.1 走時數據的取得 47
3.3.2 二維斷層掃描程式運算流程 49
3.3.3 二維斷層掃描程式各參數設定注意事項 50
第四章 數值模擬與分析 53
4.1 鋼筋混凝土構件數值模擬分析 53
4.1.1 分析模型(一)與分析模型(二) 54
4.1.2 分析模型(三)與分析模型(四) 64
4.1.3 分析模型(五)與分析模型(六) 73
4.1.4 分析模型(七) 82
4.2 預力套管數值模擬分析 88
4.2.1 分析模型(八) 88
4.2.2 分析模型(九) 95
4.2.3 分析模型(十) 103
4.2.4 分析模型(十一) 110
第五章 實驗驗證 116
5.1 實驗試體配置與檢測步驟 116
5.2 儀器設備 122
5.3 實驗結果 127
第六章 結論與建議 138
參考文獻 140
參考文獻 [1]. Radon, J., “Uber die Bestimmung von funktionen durch ihre integralwerte langs gewisser Mannigfaltigkeiten”, Bu.Succhss. Akad. Leipzig, Math. Phys. K. 69, pp. 262 (1917).
[2]. Bois, P., LaPorte, M., LaVergne, M., and Thomas, G., “Well-to-well Seismic Measurements”, Geophysics, 37, pp. 471-480 (1972).
[3]. Gordon, R., “A tutorial on ART”, IEEE Transactions on Nuclear Science, Vol. NS-21, pp. 78-93 (1974).
[4]. Julian, B. R., and Gubblins, “Three-dimensional Seismic Ray Tracing”, J. Geophys., Vol. 43, pp. 95-113 (1977).
[5]. Dines, K. A., and Lytle, R. J., “Computerized Geophysical Tomography”, Proceedings of the IEEE, Vol. 67, No.7, pp. 1065-1073 (1979).
[6]. Pereyra, V., Lee, W. H. K., and Keller, H. B., “Solving Two-point Seismic-ray Tracing Problems in Heterogeneous Medium”, B.S.S.A., 70, 79-99 (1980).
[7]. Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L., Resnick, J. R., Shuey, R. T., Spindler, D. A., and Wyld, H. W., “Tomographic Determination of Velocity and Depth in Laterally Varying Media”, Geophysics, Vol. 50, pp. 903-923 (1985).
[8]. Chiu, S. K. L., Kanasewich, E. R., and Phadke, S., “Three-dimensional Determination of Structure and Velocity by Seismic Tomography”, Geophysic, Vol. 51, pp. 1559-1571 (1986).
[9]. Saito, H., “Traveltimes and Raypaths of First Arrival Seismic Waves: Computation Method Based on Huygen’s Principle”, 59th Ann. Internat, Mtg., Soc. Expl. Geophysics, Expanded Abstracts, pp. 244-247 (1989).
[10]. Morse, T. J., “Efficient Seismic Ray Tracing Using Graph Theory”, 59th Ann. Internat, Mtg., Soc. Expl. Geophysics, Expanded Abstracts, pp. 1106-1108 (1989).
[11]. Bates, R. H. T., and McDonnel, M. J., “Image Restoration and Reconstruction”, Oxford Univ. Press., U.K. (1989).
[12]. Matsuoka, T., Asakawa, E., and Kawanaka, T., “Forward Modeling for Ray Tomography”, Proceedings of SEGJ, pp. 148-156 (1990).
[13]. Bishop, I., and Styles, P., “Seismic Tomographic Imaging of a Buried Concrete Target”, Geophysical Prospection, Vol. 38, pp. 169-188 (1990).
[14]. 陸明萬,彈性力學基礎,清華大學出版社,北京,第564-59頁(1990)。
[15]. Moser, T. J., “Shortest Path Calculation of Seismic Rays”, Geophysic, Vol. 56, pp. 59-67 (1991).
[16]. Clayton, C. R. I., Hope, V. S., and Howe, S. J., “Comment on Seismic Tomographic Imaging of A Buried Concrete Target”, Geophysical Prospecting, Vol. 39, pp. 711-718 (1991).
[17]. Phillips, W. S., and Fehler, M. C., “Traveltime Tomography: A Comparison of Popular Method”, Geophysic, Vol. 56, pp. 1639-1649 (1991).
[18]. Heiskanen, K. A., Rhim H. C., and Monteiro, “Computer Simulations of Limited Angle Tomography of Reinforced Concrete”, cement and Concrete Reasearch, Vol. 21, Iss.4, pp. 625-634 (1991).
[19]. Matsuoka, T., and Ezaka, T., “Ray Tracing Using Reciprocity”, Geophysic, Vol. 57, pp. 326-333 (1992).
[20]. Asakawa, E., and Kawanaka, T., “Seismic Ray Tracing Using Linear Traveltime Interpolation”, Geophysical Prospecting, Vol. 41, pp. 99-111 (1993).
[21]. Stewart, R. R., “Exploration Seismic Tomography: Fundamentals, Course Notes Series”, Society of Exploration Geophysicists, Oklahoma, U.S.A., Vol. 3, pp. 1-1~ pp. 2-53 (1993).
[22]. Lo, Tien-when, and Phillip, L. I., “Fundamentals of Seismic Tomography, Geophysical Monograph Series”, Society of Exploration Geophysicists, Oklahoma, U.S.A., No. 6, pp. 1-44 (1994).
[23]. Atkinson, R. H., Schuller, M. P., and Frank, D. A., “Acoustic Tomographic Studies of Reinforced Concrete”, Proceedings of 6th International Conference on Structural Faults and Repair-1995, pp. 39-42 (1995).
[24]. Zhao, P., “An Efficient Computer Program for Wavefront Calculation by the Finite-Difference Method”, Computers & Geosciences, Vol. 22, pp. 239-251 (1996).
[25]. Witte, O., Roth, M., and Müller, G., “An Efficient Computer Program for Wavefront Calculation by the Finite-Difference Method”, Computers & Geosciences, Vol. 22, pp. 239-251 (1996).
[26]. 楊文采,地球物理反演的理論與方法,地質出版社,北京,第1-14頁,第112-130頁(1997)。
[27]. Kamal, B., Ralph, E. K., and Christian, P., “Microwave Image – Location and Shape Reconstruction from Multifrequency Scattering Data”, IEEE, Vol. 45, NO.4 (1997).
[28]. 黃界超,「斷層掃描法在土木結構之應用評估」,碩士論文,國立中央大學土木工程研究所,桃園(1997)。
[29]. 紀聖威,「線性走時內差法於土木構件斷層掃描之應用」,碩士論文,國立中央大學土木工程研究所,桃園(1998)。
[30]. Davis, A. G., Ansari, F., Gaynor R. D., Lozen, K. M., Rowe, T. J., Caratin, H., Heidbrink, F. D., Malhotra, V. M., Simons, B. P., Carino, N. J., Hertlein, B. H., Olson, L. D., Sullivan, P. J., Choi, K., Hindo, K. R., Pessiki, S. P., Suprenant, B. A., Clemena, G. G., Huyke, R., Popovics, S., Teodoru, G., Cumming, N. A., Jenkins, R. S., Poston, R. W., Vogt, W. L., Dilly, R. L., Leeman, M. E., Read, P. H., Zoob, A. B., Dixon, D. E., Leshchinsky, A., Roddis, W. M. K., Draqunsky, B., Lew, H. S., Sansalone, M. J., “Nondestructive Test Methods for Evaluation of Concrete in Structures”, ACI, ACI228.2R-98 (1998).
[31]. Valle, S., Zanzi, L., and Rocca, F., “Radar Tomography for NDT: Comparison of Techniques”, Journaal of Applied Geophysics, Vol. 41, pp. 259-269 (1999).
[32]. Lanbo Liu, and Tieshuan Guo, “Seismic Non-destructive Tests on Reinforced Concrete Column of the Longtan Hoghway, GuanGxi, China”, Department of Geology and Geophysics, University of Connecticut Storrs (2000).
[33]. Thurber, C. H., and Kissling, E., Advances in Three-Time Calculations for 3-D Structures, “Advances in Seismic Event Location”, Klurwar Academic Publishers, pp. 71-99 (2000).
[34]. 黃家凌,「三維計算斷層掃描之射線追蹤正算模式」,碩士論文,國立中央大學土木工程研究所,桃園(2000)。
[35]. 高千平,「層析成像應用於透地雷達測勘之研究」,碩士論文,國立中央大學應用地質研究所,桃園(2001)。
[36]. 張益瑄,「三維線性走時內插法於土木構件斷層掃描之應用」,碩士論文,國立中央大學土木工程研究所,桃園(2001)。
[37]. Kamal, B., and Anton, G. T., “Modified Gradient Method and Modified Born Method for Solving a Two-dimensional Inverse Scattering”, Inverse Problem, 17, pp.1671-1688 (2001).
[38]. Cardarelli, E., and Nardis, D. E., “Seismic Refraction, Isotropic Anisotropic Seismic Tomography on An Ancient Monument(Antonino and Faustina Temple AD 141)”, Geophysical Prospecting, Vol. 49, pp. 228-240 (2001).
[39]. Multimedia Pandora Inc., “Road Radar Investigation by Non-Destruction Methods”, Geophysique GPR International Inc., (2001).
[40]. Anton, G. T., Kamal, B., Amelie, C. S. L., and Bastiaan P. de Hon, “Theoretical and Computational Aspects of 2-D Inverse profiling”, IEEE, Vol. 39, NO. 6, (2001).
[41]. Fratta, D., and Lestelle, “Testing a Concrete Specimen by Non-Destruction Methods”, Geophysique GPR International Inc., (2002).
[42]. 楊政穎,「鋼筋混凝土構件斷層掃描之顯像處理」,碩士論文,國立中央大學土木工程研究所,桃園(2003)。
[43]. 裴廣智,徐鴻發,林東威,“透地雷達檢測斷層影像處理技術之工程應用及實例”,The 12th TWNDT conference 2004, 第603-610頁(2004)。
[44]. 陳志賢,「RC構件之三維斷層掃描理論與數值驗證」,碩士論文,國立中央大學土木工程研究所,桃園(2005)。
[45]. Röhm, A., Bijwarrd, H., Sparkman, W., and Trampert J., “Effect of arrival time errors on traveltime tomography”, Geophys. J. Int., (2000).
[46]. Martin, J., Broughton, K. J., Giannopolous, A., Hardy, M. S. A., Forde, M. C., “Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams”, NDT&E International, Vol. 34, pp. 107-113 (2001).
[47]. Zack, G. W., Rogers, W. E., and Latt, S. A., “Automatic-measurement of sister chromatid exchange frequency”, Journal of Histochemistry & Cytochemistry, Vol. 25, pp. 741-753 (1977).
指導教授 王仲宇(Chung-Yu Wang) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明