博碩士論文 972406004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:13.58.252.8
姓名 陳靜儀(Ching-Yi Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 白光LED之螢光粉多功能模型之研究
(Study of multi-function phosphor modeling for white LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,著重於白光LED封裝螢光粉模型之建立,分別提出了螢光粉之演色性表現計算模型、等效光學模型與熱效應模型三種流程,可應用於白光LED封裝前的材料篩選,並可分析各種封裝體的效率與色彩表現,更可有效分析封裝體受熱後之色彩變化。
首先利用頻譜線性疊加的方式,來完成預測演色性表現的計算模型。該模型是藉由調整白光封裝體之藍光晶片與雙色螢光粉的不同輻射頻譜比例,來計算其演色性表現在色座標上的分佈趨勢,最後利用不同的螢光粉參數進行封裝與量測來加以驗證。經由此計算模型的建立流程,可快速套用於任何雙色螢光粉體搭配藍光晶片的組合,進而分析其不同螢光粉配方於各種混光色溫之演色性表現。
接著利用米氏散射原理結合蒙地卡羅光追跡法,描述光在螢光膠體中傳遞的行為來建立螢光粉等效光學模型,其中利用實驗量測搭配模擬來找出螢光粉光學模型之等效吸收係數與轉換係數。然而,由於螢光粉對不同波長激發光的吸收能力皆不相同,故本論文分別利用綠色螢光粉吸收頻譜搭配螢光粉吸收率,來校正藍光頻譜經過螢光膠體後的形變;並利用紅色與綠色螢光粉之吸收頻譜與輻射頻譜,分析再吸收效應對綠光頻譜造成的形變。並經由實驗與模擬的驗證,成功的建立出雙粉分層之螢光粉模型。藉由此雙色分層螢光粉等效光學模型的建立流程,可應用於各種雙色螢光粉體,來預測不同封裝型式之白光LED的光學與色彩表現,可有效分析各種封裝體的封裝效率。
最後,利用實驗量測螢光粉薄片熱衰程度,並結合螢光粉光學模型,藉由此模型建立流程可用來預測與分析各種不同螢光粉配方與不同封裝型式之白光LED封裝體於不同操作溫度下,其色座標的變化趨勢。
摘要(英) In this thesis, we studies the precise phosphor modeling of the white LEDs. We have developed the CRI calculation modeling, optical modeling, and thermal modeling of the phosphor. It can be applied for the material selection before the white light LED packaging and analysis of efficiency and color performance of white LEDs. The color variation due to the heating can be further analyzed.
Firstly, the prediction calculation of CRI performance have been performed by a linearly calculation model. The mapping of CRI distribution on the color coordinate has been calculated by the adjusting of spectra ratio of blue chip and two color phosphor. The calculation results have been verified by the experiments of real package. The developed calculation modeling is simple and useful for predicting chromatic behaviors of a white LED with two phosphors.
In the optical modeling, the scattering light can be simulated with Mie scattering based on Monte Carlo ray tracing in phosphor layer. Then use the experiment result and combine the simulation to fitting the effective absorption and conversion coefficients. Since the ability of absorption of the phosphor depend on the wavelength of excitation light, we combine the absorption spectrum of the green phosphor with the ratio of the phosphor absorption to modify the output spectrum of blue light. And we use the absorption spectrum of the red phosphor and the emission spectrum of the green phosphor to analysis the re-absorption effect. Finally, with the verification of real packages and the simulations, we successfully demonstrate the two phosphors model with double layers. The development of phosphor optical modeling can be applied to any recipe of phosphors for the prediction of chromatic performance and the analysis of package efficiency of white LED with difference package.
In the thermal modeling, we combine the thermal effect of the phosphor with the optical model to build up the thermal model of phosphor. The thermal model can simulate color coordinate with various temperature. Finally, we can predict the variation of color behavior with different operation temperature in the white LED package.
關鍵字(中) ★ 白光LED封裝
★ 螢光粉模型
★ 演色性
★ 熱效應
★ 封裝效率
關鍵字(英) ★ white LED packages
★ phosphor modeling
★ CRI
★ thermal effect
★ package efficiecy
論文目次 中文摘要 i
英文摘要 iii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xix
第一章 緒論 1
1-1 引言 1
1-2 LED背景 2
1-3 研究動機與目的 6
1-4 論文大綱 11
第二章 緒論 13
2-1 引言 13
2-2 LED發光原理 13
2-3 螢光粉發光原理 15
2-4 LED能量轉換過程 18
2-5 混色原理 19
第三章 雙色螢光粉之演色性計算模型 22
3-1 引言 22
3-2 頻譜疊加之演色性計算模型 22
3-3 演色性計算模型之驗證 31
3-4 演色性計算模型之應用 40
第四章 雙色螢光粉之等效光學模型 45
4-1 引言 45
4-2 綠色YAG螢光粉光學模型 45
4-2-1 綠色YAG螢光粉之散射模型 46
4-2-2 綠色YAG螢光粉模型之吸收參數 54
4-2-3 綠色YAG螢光粉模型之轉換參數 62
4-2-4 藍光輸出頻譜之校正 64
4-2-5 綠色YAG螢光粉光學模型之驗證 70
4-3 紅色氮化物螢光粉光學模型 74
4-3-1 紅色氮化物螢光粉之散射模型 75
4-3-2 紅色氮化物螢光粉模型之吸收與轉換參數 77
4-3-3 紅色氮化物螢光粉光學模型之驗證 80
4-4 雙色螢光粉光學模型之建立 83
4-4-1 綠光激發紅色氮化物螢光粉模型之吸收與轉換係數 84
4-4-2 雙色螢光粉之再吸收效應光學模型 90
4-5 雙色螢光粉光學模型之驗證與分析 96
第五章 螢光粉應用於白光LED之熱效應模型 104
5-1 引言 104
5-2 白光LED熱效應分析 104
5-2-1 藍光晶片輻射頻譜之熱效應分析 104
5-2-2 螢光粉輻射頻譜之熱效應分析 108
5-2-3 白光LED受熱之色座標變化 111
5-3 矽酸鹽螢光粉應用於白光LED之熱效應模型 115
5-3-1 矽酸鹽螢光粉之光學模型 116
5-3-2 矽酸鹽螢光粉之熱效應量測與分析 121
5-3-3 矽酸鹽螢光粉熱效應模型之驗證 121
第六章 結論 123
參考文獻 126
中英文名詞對照表 132
參考文獻 [1]「節約能源推動策略措施及成效」,經濟部能源局,http://www.moeaec.gov.tw/About/webpage/index.htm.
[2]「2010年能源產業技術白皮書」,經濟部能源局,民國九十九年。
[3]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[4]N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[5]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[6]H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[7]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[8]S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AIGaN double-heterostructure blue-green-lightemitting diodes,” J. Appl. Phys. 76, 8189-8191 (1994).
[9]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[10]孫慶成,2009固態照明研討會,國立中央大學,中華民國九十八年。
[11]M. G. Craford, “LEDs for solid state lighting and other emerging applications: Status,Trends, and Challenges,” Proc. SPIE 5941, 1-10 (2005).
[12]LED Magazine, http://www.ledsmagazine.com/news/7/2/7.
[13]J. Y. Tsao, An OIDA Technology Roadmap Update 2002 (Nov. 2002), http://www.netl.doe.gov/ssl/workshop/Report%20led%20November%202002a_1.pdf.
[14]LEDinside, http://www.ledinside.com.tw/node/9288/.
[15]CREE, http://www.cree.com/press/press_detail.asp?i=1304945651119.
[16]JLEDs, http://www.led.or.jp/data/docs/JLEDS_Technical%20Report%20Vol2.pdf.
[17]LEDinside, http://www.ledinside.com.tw/node/15440.
[18]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[19]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[20]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[21]T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[22]H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, and H. S. Jang, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Luminescence 126, 371–377 (2007).
[23]R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101 (2007).
[24]Energy star, http://www.energystar.gov/ia/partners/manuf_res/downloads/IntegralLampsFINAL.pdf.
[25]T. Erdem, S. Nizamoglu, X. W. Sun, and H. V. Demir, “A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores,” Opt. Express 18, 340-347 (2010).
[26]G. He and H. Yan, “Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation,” Opt. Express 19, 2519-2529 (2011).
[27]G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt. 49, 4670-4676 (2010).
[28]C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color redering index performance associated with correlated color temperature of white light-emitting diodes with two phosphors,” Opt. Eng. 51, 054003 (2012).
[29]N. T. Tran, C. G. Campbell, and F. G. Shi, “Study of particle size effects on an optical fiber sensor response examined with Monte Carlo simulation,” Appl. Opt. 45, 7557-7566 (2006).
[30]Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular CCT uniformity of phosphor converted white LEDs: effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
[31]N. T. Tran and F. G. Shi, “LED package design for high optical efficiency and low viewing angle,” Proc. IMPACT, 10-13 (2007).
[32]J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express 18, 5055-5060 (2010).
[33]N. T. Tran and F. G.. Shi, “Light extraction from light-emitting diodes: effect of die geometries,” Proc. IMPACT, 1 (2006).
[34]Y. Zhou, N. Tran, Y. C. Lin, Y. He, and F. G. Shi, “One-component, low-temperature, and fast cure epoxy encapsulant with high refractive index for LED applications,” IEEE Trans. Adv. Packag. 31,484-488 ( 2008).
[35]C. Sommer, F. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, “Tailoring of the color conversion elements in phosphor-converted high-power LEDs by optical simulations,” IEEE Photon. Technol. Lett. 20, 739-741 ( 2008).
[36]C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The impact of inhomogeneities in the phosphor distribution on the device performance of phosphor-converted high-power white LED light sources,” J. Lightwave Technol. 28, 3226-3232 (2010).
[37]C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, and F. P. Wenzl, “A detailed study on the requirements for angular homogeneity of phosphor converted high power white LED light sources,” Optical Materials 31, 837-848 (2009).
[38]C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, “The effect of the phosphor particle sizes on the angular homogeneity of phosphor-converted high-power white LED light sources,” IEEE J. Sel. Top. Quant. Electron. 15, 1181-1188 (2009).
[39]Y. Zhu and N. Narendran, “Investigation of remote-phosphor white light-emitting diodes with multi-phosphor layers,” Jpn. J. Appl. Phys. 49, 100203 (2010).
[40]N. Narendran, “Improved Performance White LED,” Proc. SPIE 5941, 1-6 (2005).
[41]H. Wu, N. Narendran, Y. Gu, and A. Bieman, “Improving the performance of mixed-color white LED by using scattered photon extraction technique,” Proc. SPIE 6669, 666905 (2007).
[42]C. Zhaohui , Z. Qin, W. Kai, X. Luo, and S. Liu, “Reliability test and failure analysis of high power LED packages,” J. Semicon. 32, 14001-14007 (2010).
[43]R. Hu, X. Luo, H. Feng , and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-convertedwhite light-emitting diode,” J. Luminescence 132, 1252–1256 (2012).
[44]何信潁, 白光LED之YAG螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[45]C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[46]張容瑄, 綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國九十九年。
[47]彭逸寧, 雙色分層螢光粉光學模型之建立與分析,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
[48]D. A. Neamen, Semiconductor Physics And Devices (McGra-Hill Higher Education, New York, 2003).
[49]郭浩中,賴芳儀和郭守義,LED原理與應用,五南圖書出版公司,台北縣,中華民國一百年。
[50]劉如熹和王健源,白光發光二極體製作技術,全華科技圖書公司,台北縣,中華民國九十四年。
[51]W. Koechner , Solid-State Laser Engineering (Springer Verlag, London, 2006).
[52]G. Blasse and B.C. Grabmaier, Luminescent materials (Springer Verlag, London, 1997).
[53]A. Didabalapur , Solid State Communications (Springer Verlag, London, 1997).
[54]N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
[55]R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quant. Electron. 8, 339-345 (2002).
[56]M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160-175 (2007).
[57]S. C. Allen and A. J. Steckl, “ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection,” J. Display Technol. 3, 155-159 (2007).
[58]R. Mueller-Mech, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quant. Electron. 8, 339-345 (2002).
[59]Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the optical properties of YAG:Ce phosphor,” Proc. SPIE 6337, 63370S (2006).
[60]大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[61]D. Haranath, H. Chander, P. Sharma, and S. Singh, “Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes ,” Appl. Opt. 49, 247-257 (2010).
[62]R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
[63]Yoshi Ohno, “Spectral design considerations for color rendering of white LED light sources,” Opt. Eng. 44, 111302 (2005).
[64]N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[65]A. Doicu and T. Wriedt, “Equivalent refractive index of a sphere with multiple spherical inclusions,” Appl. Opt. 3, 204-209 (2001).
[66]D. Toublanc, “Henyey-greenstein and mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[67]C. F. Bohren and D. R. Huffmann, Absorption and scattering of light by small particles (Wiley, New York, 1983).
[68]S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[69]M. S. Kaminski, K. J. Garcia, M. A. Stevenson, M. Frate, and R. J. Koshel, “Advanced topics in source modeling,” Proc. SPIE 4775, 46 (2002).
[70]Z. Y. Ting and C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
[71]Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[72]Breault Research Organization, http://www.breault.com/.
[73]Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552-554 (2011).
[74]N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145-5150 (2009).
[75]H. C. van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).
[76]C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[77]M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
[78]Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
[79]I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[80]C. S. McCamy , “Correlated color temperature as an explicit function of chromaticity coordinates ,” Color Res. Appl. 17, 142-144 (1992).
[81]J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities,” Appl. Opt. 38, 5703-5709 (1999).
[82]Ivan Moreno and U. Contreras, ” Color distribution from multicolor LED arrays,” Opt. Express, 15, 3607-3618 (2007).
[83]C. C. Lin and R. S. Liu, “Advances in phosphor for light-emitting diodes,” J. Phys. Chem. Lett. 2, 1268-1277 (2011).
[84]劉瑋瑋, 白光LED之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[85]A. A. Setlur, “Phosphors for LED-based Solid-state lighting,” ElectroChem. Soc. Interface 18, 32-36 (2009).
[86]J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, “Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphor for green and greenish white LEDs,” Solid State Commun. 133, 445-448 (2005).
[87]吳信美, 白光發光二極體色彩表現穩定技術之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[88]孔祥仁, 高功率白光LED封裝之螢光粉特性之研究,國立中央大學光電科學研究所碩士論文,中華民國九十八年。
[89]郭冠廷,不同激發光螢光粉光學模型之分析,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明