博碩士論文 995203047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.145.51.115
姓名 黃崇瑋(Chung-Wei Huang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 以高斯-牛頓與內爾德-米德非線性最小平方法用於無線感測網路之目標物定位
(Gauss-Newton and Nelder-Mead Nonlinear Least Squares Methods for Target Localization in Wireless Sensor Networks)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 基於輔助波束對之UAV追蹤方法實現★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無線感測網路(WSNs) 是由具有感測能力、計算能力及無
線通信能力的感測器所組成,這些感測器具備著體積小、低成本、
低功耗的特性,在感測器有著前述的特性之下,本篇研究是以接
收訊號強度(RSS) 等數據並且對其做量化(Quantization),處理中心
(Fusion center) 以此量化訊號(Quantized data) 並利用最小平方估計
法做定位,當量化階數少的時候,為了降低量化誤差造成目標函式
過多的誤差,在最小平方估計裡加入μ − law 壓縮原始訊號,得到
不錯的效果;這裡的問題屬於非線性最小平方估計,研究中也依
據高斯-牛頓法以及NM-單純形搜索法解決此最佳化問題;在量化臨界值(Quantization threshold) 上,利用Numirical 方式提出適合最
小平方估計的最佳量化臨界值,其均方根(Root Mean Square, RMS)
位置誤差也接近MLE 以及CRLB;此外,並延伸出找到適合所有
位置的量化臨界值,使用在此最小平方估計問題中。
摘要(英) Wireless sensor networks (WSNs) conventionally consist of
a large number of low-cost, low-power, densely distributed, and mostly heterogeneous sensors. For the localization application, the target signal strength in a WSN is usually reported by sensors with quantized levels and all quantized data are collected in a fusion center to estimate the target
location based on a nonlinear relationship between distance and signal strength. Instead of using the computation-intensive maximum likelihood (ML) method, we study the least squares method by which the least squares cost function is significantly deteriorated due to nonlinear parameter estimation. To solve this problem, the μ-law compression technique is considered for robust position estimation. Two nonlinear least squares estimation methods, Gauss-Newton and Nelder-Mead, are discussed in our work. Numerical results show that the proposed method can achieve
a good mean square error performance close to the ML method with lower computation loading.
關鍵字(中) ★ 無線感測網路
★ 最小平方法
★ 高斯牛頓法
★ 目標物定位
關鍵字(英)
論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第2 章系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 功率衰減模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 利用量化訊號做位置估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 最大概似估計(MLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第3 章非線性最小平方估計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 利用量化訊號做非線性最小平方估計. . . . . . . . . . . . . . . . . . . . . 11
3.2 非線性最小平方估計的最佳化方法. . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 依疊代法-高斯牛頓法解決非線性最小平方估計問題. . . . 23
3.2.2 依搜索法-單純型搜索法解決非線性最小平方估計問題. . 25
3.3 量化臨界值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 適合最大概似估計法的量化臨界值. . . . . . . . . . . . . . . . . . . 29
3.3.2 適合最小平方估計法的量化臨界值. . . . . . . . . . . . . . . . . . . 30
第4 章系統模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 演算法複雜度比較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
第5 章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
附錄A:高斯-牛頓法雅可比矩陣微分過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
附錄B:CRLB 證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻 [1] F. Z. S. Kumar and E. D. Shepherd, “Special issue on
collaborative signal and information processing in
microsensor networks,”IEEE Signal Process. Mag., vol.
19, Mar.2002.
[2] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho, “Grid
coverage for surveillance and target location in
distributed sensor networks,”IEEE Transactions on
Computers, vol. 51, no. 12, pp. 1448–1453, Dec 2002.
[3] K. Yang, G. Wang, and Z.-Q. Luo, “Efficient convex
relaxation methods for robust target localization by a
sensor network using time differences of
arrivals,”IEEE Transactions on Signal Processing,
vol. 57, no. 7, pp. 2775 –2784, July 2009.
[4] K. Yao, R. Hudson, C. Reed, D. Chen, and F.
Lorenzelli, “Blind beamforming on a randomly
distributed sensor array system,”IEEE J.Sel. Areas
Commun., vol. 16, no. 8, pp. 1555 –1567, Oct 1998.
[5] N. Patwari and A. O. Hero, “Using proximity and
quantized RSS for sensor localization in wireless
networks,”in Proc. 2nd Int. ACM Workshop on Wireless
Sensor Networks and Applications, San Diego, CA, pp.
20–29, Sep 2003.
[6] X. Sheng and Y.-H. Hu, “Maximum likelihood multiple-
source localization using acoustic energy measurements
with wireless sensor networks,”IEEE Transactions on
Signal Processing, vol. 53, no. 1,pp. 44 –53, Jan.
2005.
[7] X. Kuang and H. Shao, “Maximum likelihood localization
algorithm using wireless sensor networks,”First
International Conference on Innovative Computing,
Information and Control, ICICIC 2006., vol. 3, pp.
263 –266, 2006.
[8] D. Li, K. Wong, Y. H. Hu, and A. Sayeed, “Detection,
classification, and tracking of targets,”IEEE on
Signal Processing Magazine,vol. 19, no. 2, pp. 17 –29,
Mar 2002.
[9] R. Niu and P. Varshney, “Target location estimation in
wireless sensor networks using binary data,”in Proc.
Ann. Conf. Inf. Sci. Syst.(CISS2004), Princeton, NJ,
2004.
[10] –––, “Target location estimation in sensor networks
with quantized data,”IEEE Transactions on Signal
Processing, vol. 54, no. 12, pp.
4519 –4528, Dec. 2006.
[11] K. Cheung, H. So, W.-K. Ma, and Y. Chan, “Least
squares algorithms for time-of-arrival-based mobile
location,”IEEE Transactions on Signal Processing,
vol. 52, no. 4, pp. 1121 –1130, April 2004.
[12] E. Kim and K. Kim, “Distance estimation with weighted
least squares for mobile beacon-based localization in
wireless sensor networks,”IEEE Signal Processing
Letters, vol. 17, no. 6, pp. 559 -562, June 2010.
[13] H. C. So and L. Lin, “Linear least squares approach
for accurate received signal strength based source
localization,”IEEE Transactions on Signal Processing,
vol. 59, no. 8, pp. 4035 –4040, Aug.2011.
[14] A. Bjorck, Numerical Methods for Least Squares
Problems. SIAM,Dec.1996.
[15] K. M. R. G. V. Reklaitis, A. Ravindrad, Engineering
optimization methods and applications. John Wiley &
Sons, 1983.
[16] Y. H. Hu and D. Li, “Energy based collaborative
source localization using acoustic micro-sensor
array,”in IEEE Workshop on Multimedia Signal
Processing, Dec. 2002, pp. 371 –375.
[17] T. Pham, B. Sadler, and H. Papadopoulos, “Energy-
based source localization via ad-hoc acoustic sensor
network,”in IEEE Workshop on Statistical Signal
Processing, Sep. 2003, pp. 387 –390.
[18] O. Ozdemir, R. Niu, and P. Varshney, “Channel aware
target localization with quantized data in wireless
sensor networks,”IEEE Transactions on Signal
Processing, vol. 57, no. 3, pp. 1190 –1202,March 2009.
[19] S. M. Kay, Fundamentals of Statistical Signal
Processing - Estimation Theory. Prentice Hall, 1993.
[20] B. W. J. Emmanuel C. Ifeachor, Digital Signal
Processing - A Practical Approach. Prentice Hall, 2002.
[21] H. G. R. Spendley, W. and F. R.Himsworth, “Sequential
application of simplex designs in optimisation and
evolutionary operation,”IEEE Transactions on
Vehicular Technology, vol. 4, no. 3, pp. 441–461,
March 1962.
[22] M. H. W. Jeffrey C.Lagarias, James A. Reeds and P. E.
Wright,“Convergence properties of the nelder-mead
simplex method in low dimensions,”SIAM Journal of
Optimization, vol. 9, pp. 112–147,1998.
[23] R. Niu and P. Varshney, “Performance analysis of
distributed detection in a random sensor field,”IEEE
Transactions on Signal Processing,vol. 56, no. 1, pp.
339 –349, Jan. 2008.
指導教授 張大中(Dah-Chung Chang) 審核日期 2013-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明