博碩士論文 992212002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.14.70.203
姓名 余敏仲(Min-Zhong Yu)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 漸變折射率法應用於高品質環形光子晶體共振腔之設計
(Designing high-Q photonic crystal cavities using gradient effective index structures)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 次波長成像近場透鏡之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要討論漸變折射率共振腔,具有良好的Q值系統,利用等效折射率的概念,將漸變折射率共振腔做三大類的等效設計,分別為r方向法、θ方向法與扇形面積法。在這三種等效中,我們使用Comsol模擬軟體都得到良好的Q值,其中在θ方向法中,我們所得到的Q值高達 。
另外,我們在θ方向法的設計結構,由色散關係進一步分析,電磁波在共振腔內產生的聲頻支模態,而其電場圖由行進波轉變成駐波形式,同時也得到結構層數與可容許最大波長數量關係。
摘要(英) We use gradient effective index structures designing high-Q photonic crystal cavities (2D). And the gradient index of refraction is the parabolic distribution, it also has high-Q in the system. We calculated effective index on the r and θ direction, and the structures are formed by inserting two materials of different refractive indices ( n1=3.31 ,n2=1 ), keeping the local averaged index varying gradually along the r and θ direction. For E-polarized modes, the θ direction structure has the highest Q〜6.85x109 . ( All the simulations of field patterns in this thesis are implemented by using COMSOL MultiphysicsTM 3.5a.)
關鍵字(中) ★ 光子晶體
★ 共振腔
★ 漸變折射率
★ 環形光子晶體共振腔
關鍵字(英) ★ photonic crystal
★ cavities
★ gradient effective index
★ photonic crystal cavities
論文目次 目錄
內容
中文摘要 i
Abseract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 光子晶體歷史與簡介 1
1-3漸變折射率應用 3
第二章 共振腔研究回顧 6
2-1共振腔基礎理論 6
2-2二維光子晶體共振腔文獻回顧 7
2-3環形光子晶體共振腔文獻回顧 9
2-4類漸變光子晶體文獻回顧 10
第三章 參數設定與模擬結果 15
3-1漸變折射率 18
3-2分層式等效(等厚度) 19
3-3多層膜式等效(兩種介質) 21
3-4晶體柱與空氣柱式等效 24
3-5圓周法等效 28
第四章 分析探討與未來展望 33
4-1總結模擬 33
4-2分析比較 33
4-2-1 Q值比較 33
4-2-2 結構分析比較 34
4-2-3 色散關係分析 35
4-3未來展望 40
參考文獻 42
參考文獻 參考文獻
[1] E. M. Purcell, "Spontaneous emission probabilities at radio Frequencies," Phys. Rev. 69, 681 (1946).
[2] J. K. Hwang, "Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6mm, " IEEE Phot. Tech. Lett., 12, 1295(2000).
[3] C. Monat, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane, " J. Appl. Phys., 93, 23, (2003).
[4] S. David, "Two-dimensional photonic crystals with Ge/Si self-assembled islands, " Appl. Phys. Lett., 83, 2509(2003).
[5] Dae-Sung Song, "Single-fundamental-mode photonic -crystal vertical-cavity surface-emitting lases, " Appl. Phys. Lett., 80, 3901(2002).
[6] L. P. Biro et al, Phys. Rev. E, 67, 021907, (2003).
[7] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987).
[8] E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett.58, 2059 (1987).
[9] R. D. Meade, and J. N. Winn J. D. Joannopoulos, Photonic Crystals. Princeton University Press (2008).
[10] 欒丕綱 陳啟昌, 光子晶體 五南圖書出版有限公司 (2006).
[11] Lingling Tang, and Tomoyuki Yoshie, "Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping,"Opt. Express. Vol 17, No 3, 1346-1351(2009).
[12] http://en.wikipedia.org/wiki/Optical_fiber
[13] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science 312, 1780-1782 (2006).
[14] W. J. Kim, A. Stapleton, J.R. Cao, J. D. O’brien, P. D. Dapkus C.kim, "Quality factors in single-defect photonic crystal lasers with asymmetric cladding layers," J. Opt. Soc. Am. 19, 1777 (2002).
[15] D. Kleppner, "Inhibited spontaneous emission," Phys. Rev. Lett. 47 , 233-236 (1981).
[16] O. Painter, et al., "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999).
[17] 曾彥均, "高品質因子與低模態體積光子晶體微共振腔之設計與製作,"國立中央大學碩士論文(2007).
[18] 陳虹伶, "高品質環形光子晶體共振腔之研究,"國立中央大學碩士論文(2011).
[19] K. Noazki et al., "Laser characteristics with ultimate-small modal volume in photonic crystal salb point-shift nanolasers," Appl. Phys. Lett. 88, 211101(2006).
[20] A. Shinya, E. Kuramochi et al T. Tanabe, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110-1 (2007).
[21] Amnon Yariv Jacob Scheuer, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B, 20, 2285 (2003).
[22] William M. J. Green, Guy A. DeRose, Amnon Yariv Jacob Scheuer, "Lasing from a circular Bragg nanocavity with an ultra-small modal volume," Appl. Phys. Lett. 86, 251101 (2005).
[23] Chun Jiang, Lin Luo, "Spherical Photonic Crystal Microcavity with Ultrahigh Quality Factor," IEEE, 1, 1-3 (2010)
[24] B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature mate. 4, 207-210 (2005).
[25] Takashi Asano, and Susumu Noda Yoshinori Tanaka, "Design of Photonic Crystal Nanocavity With Q-Factor of 109 ," J. Lightwave Technol. 26, 1532-1539 (2008).
[26] Qimin Quan , and Marko Loncar, " Deterministic design of wavelength scale,ultra-high Q photonic crystal nanobeam cavities, " Opt. Express. Vol 9, No 19, 18529-18542(2011).
[27] Hung-Wen Wang , and Lien-Wen Chen " A cylindrical optical black hole using graded index photonic crystals," Appl. Phys. Lett. 109, 103104 (2011)
[28] Parag B. Deotare, and Murray W. McCutcheon, et al., "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett 94, 121106(2009).
[29] Snjezana Tomljenovic-Hanic, and C. Martijn de Sterke, "1 Design of ultrahigh-Q photoinduced cavities in defect-free photonic crystal slabs," Opt. Express. Vol 18, No 20, 21397-21403(2010).
[30] Deepak Sridharan, and Ranojoy Bose, et al., "A reversibly tunable photonic crystal nanocavity laser using photochromic thin film," Opt. Express. Vol 19, No 6, 5552-5558(2011).
[31] Myung-Ki Kim, Seung Hoon Lee, et al., "Low-loss surface-plasmonic nanobeam cavities, " Opt. Express. Vol 18, No 11, 11089-11096(2010).
[32] Tao Xu, and Mark S. Wheeler, et al., "The influence of material absorption on the quality factor of photonic crystal cavities, " Opt. Express. Vol 17, No 10, 8343-8348(2009).
[33] Yinan Zhang, and Irfan Bulu, et al., "High-Q/V air-mode photonic crystal cavities at microwave frequencies," Opt. Express. Vol 19, No 10, 9371-9377(2011).
[34] Charlton J. Chen, and Jiangjun Zheng, et al., "Selective tuning of high-Q siliconphotonic crystal nanocavities vialaser-assisted local oxidation, " Opt. Express. Vol 19, No 13, 12480-12489(2011).
[35] Qimin Quan, and Ian B. Burgess, "High-Q, et al., low index-contrast polymericphotonic crystal nanobeam cavities," Opt. Express. Vol 19, No 22, 22191- 22197 (2011).
[36] Yanjun Song, Mingkai Liu, Yanbing Zhang, Xuehua Wang, and Chongjun Jin, "High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED, " J. Opt. Soc. Am. B ,Vol. 28, No. 2 (2011)
[37] S. L. Portalupi, and M. Galli, et al., "Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor, " Opt. Express. Vol 18, No 15, 16064-16073(2011).
[38] Snjezana Tomljenovic-Hanic, Andrew D. Greentree, Brant C. Gibson, Timothy J. Karle, and Steven Prawer, "Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs," Opt. Express. Vol 19, No 22, 22219-22226 (2011).
[39] Seung-Woo Jeon, Jin-kyu Han, Bong-Shik Song, and Susumu Noda, "Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity," Opt. Express. Vol 18, No18, 19361-19366 (2010).
[40] Masahiro Nomura, Katsuaki Tanabe, Satoshi Iwamoto, and Yasuhiko Arakawa, "High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity," Opt. Express. Vol 18, No 8, 8144-8150 (2010).
[41] Matt Eichenfield, Ryan Camacho, Jasper Chan, Kerry J. Vahala, and Oskar Painter, "A picogram- and nanometre-scale photonic-crystal optomechanical cavity," Nature Letter Vol 459, 28 (2009).
[42] Masahiro Nomura, "GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators," Opt. Express. Vol 20, No 5, 5204-5212 (2012).
[43] Jasper Chan, Matt Eichenfield, Ryan Camacho, and Oskar Painter ,"Optical and mechanical design of a zipper photonic crystal," Opt. Express. Vo1 17, No 5, 3802(2009).
[44] Snjezana Tomljenovic-Hanic, Andrew D. Greentree , et al., " Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs, " Opt. Express. Vo1 17, No 8, 6465(2009).
[45] X. Checoury, D. N eel, P. Boucaud, et al., "Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities, " Appl. Phys. Lett. 101,171115 (2012).
[46] D. Sam-Giao,D. Néel,S. Sergent , et al., "High quality factor AlN nanocavities embedded in a photonic crystalwaveguide, " Appl. Phys. Lett. 100,101104 (2012).
[47] S. Sergent, M. Arita, S. Kako , et al., "High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer, " Appl. Phys. Lett. 101,101106 (2012).
[48] T. Guillet , M. Mexis , S. Sergent, "High quality factor photonic resonators for nitride quantum dots, "Phys. Status Solidi B 249, No. 3(2012).
[49] Takumi Kato, Wataru Yoshiki, Ryo Suzuki, and Takasumi Tanabe, et al., "Octagonal silica toroidal microcavity for controlled optical coupling," Appl. Phys. Lett. 101, 121101 (2012).
[50] D. Neel ,S. Sergent, M. Mexis , et al., "AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate," Appl. Phys. Lett. 98, 261106 (2011).
[51] Pi-Gang Luan, and Kao-Der Chang, "Transmission characteristics of finite periodic dielectric waveguides, " Opt. Express. Vol 14, No 8, 3263(2006).
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2013-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明