參考文獻 |
[1] D. A. George, R. R. Bowen, and J. R. Storey, “An Adaptive Decision Feedback Equalizer,” IEEE Trans. Commun. Technol., vol. 19, no. 3, pp. 281-293, Jun. 1971.
[2] C. A. Bel_ore and J. John H. Park, “Decision Feedback Equalizer,” IEEE Trans. Commun. Technol., vol. 67, no. 8, pp. 1143-1156, Aug. 1979.
[3] W. S. Kim, C. K. Seong, and W. Y. Choi, “A 5.4-Gbit/s Adaptive Continuous-Time Linear Equalizer Using Asynchronous Undersampling Histograms,” IEEE Trans. Circuits Syst. II, vol. 59, no. 9, pp. 553-557, Sept. 2012.
[4] A. Momtaz and M. M. Green, “An 80mW 40Gb/s 7-Tap T/2-Spaced FFE in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 629-639, Mar. 2010.
[5] M. S. Chen, Y. N. Shih, C. L. Lin, H. W. Hung, and J. Lee, “A 40Gb/s TX and RX Chip Set in 65nm CMOS,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2011, pp. 146-148.
[6] J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally, and M. Horowitz, “A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2745-2757, Dec. 2007.
[7] M. Ramezani, M. Abdalla, A. Shoval, M. V. Ierssel, A. Rezayee, A. McLaren, C. Holdenried, J. Pham, E. So, D. Cassan, and S. Sadr, “An 8.4mW/Gb/s 4-lane 48Gb/s Multi-Standard-Compliant Transceiver in 40nm Digital CMOS Technology,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2011, pp. 352-354.
[8] G. Balamurugan, J. Kennedy, G. Banerjee, J. E. Jaussi, M. Mansuri, F. OMahony, B. Casper, and R. Mooney, “A Scalable 515 Gbps, 1475 mW Low-Power I/O Transceiver in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1010-1019, Apr. 2008.
[9] M. Harwood, N. Warke, R. Simpson, T. Leslie, A. Amerasekera, S. Batty, D. Colman, E. Carr, V. Gopinathan, S. Hubbins, P. Hunt, A. Joy, P. Khandelwal, B. Killips, T. Krause, S. Lytollis, A. Pickering, M. Saxton, D. Sebastio, G. Swanson, A. Szczepanek, T. Ward, J. Williams, R. Williams, and T. Willwerth, “A 12.5Gb/s SerDes in 65nm CMOS Using a Baud-Rate ADC with Digital Receiver Equalization and Clock Recovery,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2007, pp. 436-591.
[10] J. Cao, B. Zhang, U. Singh, D. Cui, A. Vasani, A. Garg, W. Zhang, N. Kocaman, D. Pi, B. Raghavan, H. Pan, I. Fujimori, and A. Momtaz, “A 500mW Digitally Cali-brated AFE in 65nm CMOS for 10Gb/s Serial Links over Backplane and Multimode Fiber,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb. 2009, pp. 370-371,371a.
[11] B. Abiri, A. Sheikholeslami, H. Tamura, and M. Kibune, “An Adaptation Engine for a 2x Blind ADC-Based CDR in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3140-3149, Dec. 2011.
[12] E. H. Chen, R. Yousry, and C. K. K. Yang, “Power Optimized ADC-Based Serial Link Receiver,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 938-951, Apr. 2012.
[13] B. Abiri, A. Sheikholeslami, H. Tamura, and M. Kibune, “A 5Gb/s Adaptive DFE for 2x Blind ADC-Based CDR in 65nm CMOS,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, Feb. 2011, pp. 436-438.
[14] K. K. Parhi, VLSI Digital Signal Processing Systems : Design and Implementation. New York, USA: John Wiley, LTD., 1999.
[15] M. Renfors and Y. Neuvo, “The Maximum Sampling Rate of Digital Filters under Hardware Speed Constraints,” IEEE Trans. Circuits Syst. II, vol. 28, pp. 196-202, Mar. 1981.
[16] A. Gatherer and T. H. Y. Meng, “High Sampling Rate Adaptive Decision Feedback Equalizers,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, Apr. 1990, pp. 909-912.
[17] A. Gatherer and T. H. Y. Meng, “A Robust Adaptive Parallel DFE Using Extended LMS,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 1000-1005, Feb. 1993.
[18] K. J. Raghunath and K. K. Parhi, “Parallel Adaptive Decision Feedback Equalizers,” IEEE Trans. Signal Process., vol. 41, no. 5, pp. 1956-1961, May 1993.
[19] N. R. Shanbhag and K. K. Parhi, “Pipelined Adaptive DFE Architectures Using Relaxed Look-Ahead,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1368-1385, Jun. 1995.
[20] K. K. Parhi, “Pipelining of Parallel Multiplexer Loops and Decision Feedback Equalizers,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP), vol. 5, May 2004, pp. 17-21.
[21] K. K. Parhi, “Design of Multigigabit Multiplexer-Loop-Based Decision Feedback Equalizers,” IEEE Trans. VLSI Syst., vol. 13, no. 4, pp. 489-493, Apr. 2005.
[22] D. Oh and K. K. Parhi, “Low Complexity Design of High Speed Parallel Decision Feedback Equalizers,” in IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), Sep. 2006, pp. 118-124.
[23] C. H. Lin, A. Y.Wu, and F. M. Li, “High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems,” IEEE Trans. Circuits Syst. II, vol. 53, pp. 911-915, Sep. 2006.
[24] “http://www.usb.org/press/USB-IF Press Releases/SuperSpeed 10Gbps USBIF Final.pdf.”
[25] J. Barry, E. Lee, and D. Messerschmitt, “Capacity Penalty Due to Ideal Zero-Forcing Decision-Feedback Equalization,” IEEE Trans. Inf. Theory, vol. 42, no. 4, pp. 1062-1071, Jul. 1996.
[26] J. Cio_, G. Dudevoir, M. Vedat Eyuboglu, and J. Forney, G.D., “MMSE Decision-Feedback Equalizers and Coding. I. Equalization Results,” IEEE Trans. Commun., vol. 43, no. 10, pp. 2582-2594, Oct. 1995.
123
[27] W.-R. Wu and Y.-M. Tsuie, “An LMS-based Decision Feedback Equalizer for IS-136 Receivers,” IEEE Transactions on Vehicular Technology, vol. 51, no. 1, pp. 130-143, Jan. 2002.
[28] G. Long, F. Ling, and J. G. Proakis, “The LMS Algorithm with Delayed Coefficient Adaptation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 9, pp. 1397-1405, Sep. 1989.
[29] B. E. Jun, D. J. Park, and Y. W. Kim, “Convergence Analysis of Sign-Sign LMS Algorithm for Adaptive Filters with Correlated Gaussian Data,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)., vol. 2, May 1995, pp. 1380-1383.
[30] D. Chao and D. Wang, “Iteration Bounds of Single-Rate Data Flow Graphs for Concurrent Processing,” IEEE Trans. Circuits Syst. I, vol. 40, no. 9, pp. 629-634, Sep. 1993.
[31] D. Chan and L. Rabiner, “Analysis of Quantization Errors in the Direct Form for Finite Impulse Response Digital Filters,” IEEE Trans. Audio Electroacoust., vol. 21, no. 4, pp. 354-366, Aug. 1973.
[32] H. Tuan, T. Son, P. Apkarian, and T. Nguyen, “Low-Order IIR Filter Bank Design,” IEEE Trans. Circuits Syst. I, vol. 52, no. 8, pp. 1673-1683, Aug. 2005.
[33] J. Ma, K. K. Parhi, and E. F. Deprettere, “Pipelined CORDIC-Based Cascade Orthogonal IIR Digital Filters,” IEEE Trans. Circuits Syst. II, vol. 47, no. 11, pp. 1238-1253, Nov. 2000.
[34] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The Fast Fourier Transform and Its Applications,” IEEE Trans. Educ., vol. 12, no. 1, pp. 27-34, Mar. 1969.
[35] Roberts and R. A., Digital Signal Processing. Boston, USA: Addison-Wesley, 1987.
[36] S. Haykin, Adaptive Filter Theory, 4th Edition. New Jersey, USA: Prentice Hall, Inc., 2002.
[37] D. Zhao, F. Huang, X. Tang, and X. Sun, “Design of VGA for 6 GHz Radio Frequency Communication System,” in IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), Sep. 2012, pp. 1-4.
[38] E. Eweda, “Transient Performance Degradation of The LMS, RLS, Sign, Signed Regressor, and Sign-Sign Algorithms with Data Correlation,” IEEE Trans. Circuits Syst. II, vol. 46, no. 8, pp. 1055-1062, Aug. 1999.
[39] V. Rajaraman and H. Wertz, “On Stability and Steepest Descent,” IEEE Transactions on Automatic Control, vol. 8, no. 1, pp. 61-62, Jan. 1963.
[40] T. Chen, Y. Zakharov, and C. Liu, “Low-Complexity Channel-Estimate Based Adaptive Linear Equalizer,” IEEE Signal Process. Lett., vol. 18, no. 7, pp. 427-430, Jul. 2011.
[41] M. Rupp and A. Bahai, “Training and Tracking of Adaptive DFE Algorithms under IS-136,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Apr. 1997, pp. 341 -344.
[42] R. Zukunft, S. Haar, and T. Magesacher, “A Blind Adaptation Algorithm for Decision Feedback Equalization for Dual-Mode CAP-QAM Reception,” in IEEE Global Telecommunications Conference (GLOBECOM), vol. 1, Nov. 2002, pp. 307-311.
[43] W. Chung and C. You, “Fast Recovery Blind Equalization for Time-Varying Channels Using Run-And-Go Approach,” IEEE Trans. Broadcast., vol. 53, no. 3, pp. 693-696, Sept. 2007.
[44] R. Merched, “Fast Computation of Constrained Decision Feedback Equalizers,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2446-2457, Jun. 2007.
[45] S. Kasturia and J. M. Cio_, “Vector Coding with Decision Feedback Equalization for Partial Response Channels,” in IEEE Global Telecommunications Conference (GLOBECOM), Nov. 1988, pp. 853-857.
[46] Y. C. Lin, S. J. Jou, and M. T. Shiue, “High Throughput Concurrent Lookahead Adaptive Decision Feedback Equalizer,” IET Circuits, Devices Syst., vol. 6, pp. 52-62, 2012.
[47] Y. C. Lin, S. J. Jou, and M. T. Shiue, “High Throughput Extended Incremental Coefficient-Lookahead Filters Based Adaptive Decision Feedback Equalizer,” International Journal of Electrical Engineering, vol. 19, no. 3, pp. 115-126, 2012.
[48] “10GBASE-LX4, IEEE Std 802.3ae-2002,” http://www.ieee802.org/3/ae.
[49] N. A. Dhahir and J. M. Cio_, “Fast Computation of Channel-Estimate Based Equalizers in Packet Data Transmission,” IEEE Trans. Signal Process., vol. 43, no. 11, pp.2462-2473, Nov. 1995.
[50] J. S. Baek, S. W. Park, and J. S. Seo, “Fast Start-Up Decision Feedback Equalizer Based on Channel Estimation for 8VSB DTV System,” IEEE Trans. Broadcast., vol. 53, no. 1, pp. 38-47, Mar. 2007.
[51] D. L. Duttweiler, J. E. Mazo, and D. G. Messerschmitt, “An Upper Bound on the Error Probability in Decision-Feedback Equalization,” IEEE Trans. Inf. Theory, vol. 20, pp. 490-497, Jul. 1974.
[52] A. Levine and R. McGhee, “Cumulative Distribution Functions for A Sinusoid Plus Gaussian Noise (Corresp.),” IEEE Trans. Inf. Theory, vol. 5, no. 2, pp. 90-91, Jun. 1959.
[53] J. Newell, “High Speed Pseudo-Random Binary Sequence Generation for Testing and Data Scrambling in Gigabit Optical Transmission Systems,” in IEE Colloquium on Gigabit Logic Circuits, Apr. 1992, pp. 1-4. |