博碩士論文 963403603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.191.62.68
姓名 白通安(Tuan-anh Bui)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Design and fabrication of Fresnel lens and piezoelectric transducer for ultrasonic ejectors)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發展超音波噴墨技術應用於商業化列印裝置中,一直呈現增長之趨勢,其技術中包括了超音波噴墨裝置的使用。超音波噴墨裝置中的兩個主要元件:四階菲涅爾透鏡與壓電換能器,將在本論文中呈現與探討因製作參數的改變而影響其特性。
為了改善超音波能量之聚焦效率,本研究探討了操作頻率於100與200MHz下之菲涅爾聚焦透鏡的設計與製作方式。藉由試驗實驗,除了探討因製程參數對四階菲涅爾透鏡之外表輪廓所造成之影響,並找尋了最佳製程程序。其採用兩層光罩而無硬遮罩之製程程序首次被實行且可成形四階菲涅爾透鏡之外表輪廓,雖然結果並不理想。而菲涅爾透鏡之品質可藉由使用SiO2薄膜為硬光罩之二和三層光罩製程獲得改善;與使用二層光罩製程比較,使用三層光罩製程可獲得較佳側壁輪廓之菲涅爾透鏡。此外,觀察SU-8感光保臒膜於聚焦透鏡外表輪廓所造成之結果,可用來評估使用二層光罩製程所製作四階菲涅爾透鏡之聲能聚焦效率;有限元素法模擬結果顯示,利用表面輪廓來估測菲涅爾透鏡之效率是一種有效的評估工具。
為了設計與製造壓電換能器,本研究中亦探討了影響ZnO薄膜晶元生長之影響因子,其中包括有無熱處理之鋁、鉑,射頻功率,Ar:O2氣體比,ZnO薄膜晶元生長之基板溫度。在射頻功率178瓦,基板380 C,10mTorr沉積壓力,與50% Ar:O2氣體比之條件下,高c軸方向性之ZnO薄膜可順利的沉積於退火後之Pt/Ti/SiO2/Si基板。此外,本研究提出兩步驟之ZnO薄膜沉積方式,可用來發展結構為Al/ZnO/Pt/Ti/SiO2/Si之壓電換能器,其分別在第一與第二步驟中,使用0.7 Pa與1.3 Pa沉積壓力,射頻功率100與178瓦,濺鍍 Ar:O2氣體比為1:3與1:1之條件。上述條件可藉由觀察沉積參數所造成的ZnO薄膜特性與高c軸方向性結構紋理,來加以確認。
摘要(英) The tendency of developing ultrasonic printing technology is increasing in the commercialized printing devices, which incorporate with ultrasonic ejectors. In this thesis, the influences of fabrication parameters on the characteristics of four-level Fresnel lens and piezoelectric transducers, which are the two main components of an ultrasonic ejector, will be presented and discussed.
The design and fabrication of Fresnel focusing lenses operating at frequencies of 100 and 200 MHz was investigated in order to enhance the focusing efficiency of ultrasonic energy. The effects of process parameters on the four-level Fresnel lens profiles were discussed to find a most feasible fabrication procedure through some trial experiments. A fabrication process employing a two-mask without using a hard mask was first carried out. The profile of four-level Fresnel lens was shaped even it was not really expected. The quality of the Fresnel lens was improved when two- and three-mask processes using a SiO2 film as the hard mask are employed. Besides, a better side-wall profile of Fresnel lens was obtained by using the three-mask process as compared to the two-mask one. In addition, a two-mask fabrication process of a four-level Fresnel lens was used to evaluate its characteristics through investigating the effect of SU-8 photoresist on the profile of the focusing lens. Besides, an investigation of the influence of surface profile on the efficiency was proposed to evaluate the acoustic energy focusing efficiency of the fabricated Fresnel lens. The simulation results of the FEM showed that it can be a useful tool to estimate the efficiency of Fresnel lenses through their surface profiles in trailed fabrications.
For design and fabrication of the piezoelectric transducer, the influences of factors that can affect the crystallization growth of ZnO films were figured out and investigated. The influences of aluminum (Al), platinum (Pt) with/without heat treatment, RF power and the Ar:O2 gas ratio; substrate temperature on the crystallization growth of ZnO films were
iii
proposed and discussed. Indeed, highly c-axis (002) oriented ZnO films were successfully deposited on Pt (annealed)/Ti/SiO2/Si substrates under feasible conditions, such as RF power of 178 W, substrate temperature of 380 C, deposition pressure of 10mTorr and Ar:O2 gas flow ratio of 50%. Besides, a two-step deposition of ZnO films was proposed to develop a feasible fabrication of a piezoelectric transducer with the structure Al/ZnO/Pt/Ti/SiO2/Si under reasonable conditions, which include deposition pressure of 0.7 Pa and 1.3 Pa, RF power of 100 W and 178 W, and sputtering gas ratio Ar:O2 = 1:3 and 1:1 for first and second step, respectively. These conditions were applied and confirmed through investigating the influences of deposition parameters on the properties of ZnO films. Highly c-axis textured and other reasonable properties of ZnO films were confirmed.
關鍵字(中) ★ 菲涅爾透鏡
★ 壓電換能器
★ 超音波噴墨器
關鍵字(英)
論文目次 Table of Contents
摘要 .............................................................................................................................................. i
Abstract ........................................................................................................................................ ii
Acknowledgements ...................................................................................................................... iii
List of Figures .............................................................................................................................. vi
List of Tables ............................................................................................................................... ix
Chapter 1 Introduction .......................................................................................................... 1
1.1. Background and motivation ............................................................................................ 1
1.2. Literature survey ............................................................................................................ 6
1.3. Frame work .................................................................................................................. 10
Chapter 2 Fundamental theory of ultrasonic ejector ............................................................. 12
2.1. Ultrasound ................................................................................................................... 12
2.1.1. Sound excitation and propagation ...................................................................................... 12
2.1.2. Physical properties of ultrasound ....................................................................................... 13
2.2. Piezoelectric transducer ................................................................................................ 24
2.2.1. Piezoelectric effect ............................................................................................................ 25
2.2.2. Piezoelectric constitutive equations ................................................................................... 27
2.2.3. Analysis of piezoelectric resonant frequency with Mason’s model...................................... 28
2.3. Ultrasonic focusing lens ............................................................................................... 35
2.3.1. Mechanisms of focusing energy in different type of lens .................................................... 35
2.3.2. Parameters of binary Fresnel lens ...................................................................................... 43
Chapter 3 Fabrication of Fresnel lens .................................................................................. 46
3.1. Designated parameters of Fresnel lens .......................................................................... 47
3.2. Fabrication process of Fresnel lens ............................................................................... 48
3.2.1. Two-mask fabrication process of Fresnel lens .................................................................... 49
3.2.2. Two-mask fabrication process employing an SiO2 hard mask ............................................. 52
3.2.3. Three-mask fabrication process employing an SiO2 hard mask ........................................... 55
3.2.4. Two-mask fabrication process employing Su-8 PR without an SiO2 hard mask ................... 56
Chapter 4 Fabrication of piezoelectric transducer ................................................................ 62
4.1. General properties of ZnO ............................................................................................ 63
4.2. Fundamentals of sputtering ........................................................................................... 65
4.2.1. DC sputtering .................................................................................................................... 67
4.2.2. RF sputtering .................................................................................................................... 68
4.2.3. Magnetron sputtering ........................................................................................................ 68
4.3. Fabrication process of ZnO piezoelectric transducer ..................................................... 69
Chapter 5 Results and discussion ......................................................................................... 76
5.1. Result and discussion of Fresnel lens fabrication .......................................................... 76
5.1.1. Two-mask fabrication process of Fresnel lens .................................................................... 76
5.1.2. Two-mask fabrication process employing an SiO2 hard mask ............................................. 79
5.1.3. Three-mask fabrication process employing an SiO2 hard mask ........................................... 83
5.1.4. Two-mask fabrication process employing Su-8 PR without an SiO2 hard mask ................... 86
5.2. Estimation of energy focusing efficiency of Fresnel lens based on surface profile ......... 93
5.2.1. Achievable surface profiles of Fresnel lens ........................................................................ 93
5.2.2. Focusing efficiency estimation of Fresnel lens based on fabricated surface profile ............ 100
5.3. Finite element analysis of energy focusing phenomenon in an ultrasonic ejector ......... 102
5.3.1. Finite element formulation .............................................................................................. 103
5.3.2. Numerical simulation of a model employing a spherical lens............................................ 105
5.3.3. Numerical simulation of the designated and fabricated models ......................................... 109
5.4. Result and discussion of ZnO piezoelectric transducer fabrication .............................. 117
5.4.1. Effects of substrate materials on crystallization of ZnO films ........................................... 117
5.4.2. Effects of RF power and oxygen concentration of sputtering gas on crystallization of ZnO films ............................................................................................................................... 121
5.4.3. Effects of substrate temperature on crystallization of ZnO films ....................................... 123
5.4.4. Two-step sputtering of thick ZnO films ........................................................................... 127
5.4.5. Impedance measurement of ZnO piezoelectric transducer ................................................ 129
Chapter 6 Conclusions and suggestions ............................................................................. 132
6.1. Conclusions .................................................................................................................... 132
6.2. Suggestions ..................................................................................................................... 134
References ................................................................................................................................ 135
參考文獻 References
[1] H. P. Le, 1998, "Progress and Trends in Ink-jet Printing Technology," The Journal of Imaging Science and Technology, Vol. 42 (1), pp. 49-62.
[2] J. Brünahl, 2003, "Physics of Piezoelectric Shear Mode Inkjet Actuators," Universitetsservice US-AB, Stockholm,
[3] R. W. Wood and A. L. Loomis, 1927, "The physical and biological effects of high-frequency sound-waves of great intensity,," Philosophical Magazine, Vol. 4 (22),
[4] B. Hadimioglu, S. A. Elrod, D. L. Steinmetz, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, E. G. Rawson, and C. F. Quate, 1992, "Acoustic Ink Printing," in Proc. 1992 IEEE Ultrason. Symp., Orlando, FL, pp. 929-935.
[5] B. Hadimioglu, E. G. Rawson, R. Lujan, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, and C. F. Quate, 1993, "High-Efficiency Fresnel Acoustic Lenses," in Proc. 1993 IEEE Ultrason. Symp., Baltimore, MD, pp. 579-582.
[6] B. Hadimioglu, S. Elrod, and R. Sprague, 2001, "Acoustic Ink Printing: an Application of Ultrasonics for Photographic Quality Printing at High Speed," in Proc. 2001 IEEE Ultrason. Symp., Atlanta, GA, pp. 627-635.
[7] B. H. S. A. Elrod, B. T. Khuri-Yakub, E. G. Rawson, E. Richley, C. F. Quate, N. N. Mansour, and T. S. Lundgren, 1989, "Nozzleless Droplet Formation with Focused Acoustic Beams," Journal of Applied Physics, Vol. 65 (9), pp. 3441-3447.
[8] U. Demirci, 2006, "Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology," Journal of Microelectromechanical Systems, Vol. 15 (4), pp. 957-966.
[9] H. Yu, Q. Zou, J. W. Kwon, and E. S. Kim, 2007, "Liquid Needle," Journal of Microelectromechanical Systems, Vol. 16 (2), pp. 445-453.
[10] J. M. Meacham, M. J. Varady, F. L. Degertekin, and A. G. Fedorov, 2005, "Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling," Physics of Fluids, Vol. 17 (10), pp. 100605.
[11] S. C. Tsai, C. H. Cheng, W. Ning, Y. L. Song, C. T. Lee, and C. S. Tsai, 2009, "Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 56 (9), pp. 1968-1979.
[12] H. Fukumoto, J. Aizawa, H. Nakagawa, and H. Narumiya, 2000, "Printing with Ink Mist Ejected by Ultrasonic Waves," Journal of Imaging Science and Technology, Vol. 44 (5), pp. 398-405.
[13] K. T. Lovelady and L. F. Toye, 1981, "Liquid Drop Emitter," US Patent, No. 4308547.
[14] B. T. Chu and R. E. Apfel, 1982, "Acoustic Radiation Pressure Produced by a Beam of Sound," Journal of the Acoustical Society of America, Vol. 72 (6), pp. 1673-1687.
[15] G. S. Kino, 1987, Acoustic Waves: Devices, Imaging, and Analog Signal Processing: Prentice-Hall.
[16] M. Z. Sleva and W. D. Hint, 1990, "Design and construction of a PVDF Fresnel lens," Proc. 1990 IEEE Ultraso. Symp., Vol. 2pp. 821-826.
[17] S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, "Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Waves and Nozzle," in Proc. 1999 IEEE Ultraso. Symp., Caesars Tahoe, NV, pp. 695-698.
[18] H. Fukumoto, J. Aizawa, H. Matsuo, H. Narumiya, and K. Nakagawa, 2000, "Liquid Ejector Which Uses a High-Order Ultrasonic Waves to Eject Ink Droplets and Printing Apparatus Using Same," US Patent, No. 6155671.
[19] D. Huang and E. S. Kim, 2001, "Micromachined Acoustic-Wave Liquid Ejector," Journal of Microelectromechanical Systems, Vol. 10 (3), pp. 442-449.
[20] J. W. Kwon, Q. Zou, and E. S. Kim, 2002, "Directional Ejection of Liquid Droplets Through Sectoring Half-Wave-Band Sources of Self-Focusing Acoustic Transducer," IEEE International Micro Electro Mechanical Systems Conference, pp. 121-124.
[21] J. W. Kwon, H. Yu, Q. Zou, and E. S. Kim, 2006, "Directional droplet ejection by nozzleless acoustic ejectors built on ZnO and PZT," Journal of Micromechanics and Microengineering, Vol. 16 (12), pp. 2697.
[22] C.-Y. Lee, H. Yu, and E. S. Kim, 2006, "Acoustic Ejector with Novel Lens Employing Air-Reflectors," in Proc. 19th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS 2006), Istanbul, Turkey, pp. 170-173.
[23] X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, S. Maeng, S. H. Kim, Y. J. Choi, D. S. Lee, N. M. Park, J. Park, and W. I. Milne, 2007, "ZnO film for application in surface acoustic wave device," Journal of Physics: Conference Series, Vol. 76pp. 012035.
[24] P. Defranould, 1981, "High Deposition Rate Sputtered ZnO Fin Films for BAW and SAW Applications," Proceedings of 1981 IEEE Ultrasonics Symposium, pp. 483-488.
[25] P. M. Martin, M. S. Good, J. W. Johnston, G. J. Posakony, L. J. Bond, and S. L. Crawford, 2000, "Piezoelectric films for 100-MHz ultrasonic transducers," Thin Solid Films, Vol. 379pp. 253-258.
[26] Y. Yoshino, Y. Ushimi, H. Yamada, and M. Takeuchi, 2003, "Zinc oxide piezoelectric thin films for bulk acoustic wave resonators," Murata Manufacturing Co., Ltd., 2-26-10 Tenjin, Nagaoka-kyo, Kyoto, Japan.,
[27] J. Golebiowski, 1999, "Fabrication of piezoelectric thin film of zinc oxide in composite membrane of ultrasonic microsensors," Journal of Materials Science, Vol. 34 (19), pp. 4661-4664.
[28] Z. Yan, X. Y. Zhou, G. K. H. Pang, T. Zhang, W. L. Liu, J. G. Cheng, Z. T. Song, S. L. Feng, L. H. Lai, J. Z. Chen, and Y. Wang, 2007, "ZnO-based film bulk acoustic resonator for high sensitivity biosensor applications," Applied Physics Letters, Vol. 90 (14), pp. 143503.
[29] Y. H. Hsu, J. Lin, and W. C. Tang, 2008, "RF sputtered piezoelectric zinc oxide thin film for transducer applications," Journal of Materials Science - Materials in Electronics, Vol. 19 (7), pp. 653-661.
[30] R. C. Lin, Y. C. Chen, and K. S. Kao, 2007, "Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators," Applied Physics A: Materials Science & Processing, Vol. 89 (2), pp. 475-479.
[31] J. W. Kwon, H. Y. Yu, and E. S. Kim, 2005, "Film transfer and bonding techniques for covering single-chip ejector array with microchannels and reservoirs," Journal of Microelectromechanical Systems, Vol. 14 (6), pp. 1399-1408.
[32] P. D. Edmonds, 1981, Methods of Experimental Physics vol. 19: Academic Press.
[33] R. Feng, 2001, Ultrasonics Handbook. Nanjing: Nanjing University Press.
[34] C. P. Lee and T. G. Wang, 1993, "Acoustic radiation pressure," J. Acoust. Soc. Am., Vol. 94 (2), pp. 1099-1109.
[35] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000, Fundamentals of Acousitcs: John Wiley & Sons, Inc.,United States of America.
[36] K. W. Tay, 2005, "The Analysis and Design of Film Bulk Acoustic-Wave Resonators," Master, National Cheng Kung University,
[37] H. S. Tzou and M. C. Natori, 2001, "PIEZOELECTRIC MATERIALS AND CONTINUA," in Encyclopedia of Vibration, G. B. Editor-in-Chief: Simon, Ed., ed Oxford: Elsevier, pp. 1011-1018.
[38] F. Standards committee of the IEEE Ultrasonics, and Frequency Control Society. (1988). IEEE standard on piezoelectricity. Available: http://ieeexplore.ieee.org/servlet/opac?punumber=2511
[39] Z. M. Zhou, 2003, Piezoelectricity Mechanics: Chuan-Hwa Science & Technology Book Co., Ltd., Taipei, Taiwan.
[40] J. F. Rosenbaum, 1988, Bulk Acoustic Wave Theory and Devices: Artch House, Inc., Norwood, Massachusetts
[41] S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, "Ink mist jet generation using low frequency focused ultrasonic waves and nozzle," in Proceedings of IEEE Ultrasonics Symposium, pp. 695-698.
[42] J. Aizawa, H. Fukumoto, and M. Takeda, 2004, "Droplet Ekector and Liquid Supply Tube," US Patent, No. 6692106B2.
[43] S. C. Chan, M. Mina, S. S. Udpa, L. Udpa, and W. Lord, 1996, "Finite Element Analvsis of Multilevel Acoustic Fresnel Lenses," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43 (4), pp. 670-677.
[44] J. Aizawa, H. Fukumoto, and M. Takeda, 2003, "Liquid Ejector," US Patent, No. 6692106B2.
[45] C. F. Quate, E. G. Rawson, and B. Hadimioglu, 1991, "Muti-Discrete-Phase Fresnel Acoustic Lenses and Their Application to Acoustic Ink Printing," US Patent, No. 5041849.
[46] H. Xiao, 2001, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, New Jersey.
[47] W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, 2005, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," Journal of Applied Physics, Vol. 97 (5), pp. 054907.
[48] F. F. C. Duval, R. A. Dorey, R. W. Wright, Z. R. Huang, and R. W. Whatmore, 2004, "Fabrication and modeling of high-frequency PZT composite thick film membrane resonators," IEEE transactions on ultrasonics, ferroelectrics and frequency control, Vol. 51 (10), pp. 1255-1261.
[49] Q. F. Zhou, K. K. Shung, and Y. Huang, 2007, "Improvement electrical properties of sol-gel derived lead zirconate titanate thick films for ultrasonic transducer application," Journal of Materials Science, Vol. 42 (12), pp. 4480-4484.
[50] S. F. Shao, J. L. Zhang, Z. Zhang, P. Zheng, M. L. Zhao, J. C. Li, and C. L. Wang, 2008, "High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route," Journal of Physics D: Applied Physics, Vol. 41 (12),
[51] K. Nam, Y. Park, B. Ha, D. Shim, I. Song, J. Pak, and G. Park, 2005, "Piezoelectric properties of aluminum nitride for thin film bulk acoustic wave resonator," Journal of the Korean Physical Society, Vol. 47pp. S309-S312.
[52] K.-W. Tay, P.-H. Sung, Y.-C. Lin, and T.-J. Hung, 2008, "Characteristics of ZnO thin film for film bulk acoustic-wave resonators," Journal of Electroceramics, Vol. 21 (1), pp. 178-183.
[53] Y. Lin, C. Hong, and H. Chuang, 2008, "Fabrication and analysis of ZnO thin film bulk acoustic resonators," Applied Surface Science, Vol. 254 (13), pp. 3780-3786.
[54] J. C. Zesch, B. Hadimioglu, B. T. Khuri-Yakub, M. Lim, R. Lujan, J. Ho, S. Akamine, D. Steinmetz, C. F. Quate, and E. G. Rawson, 1991, "Deposition of highly oriented low-stress ZnO films," in Proc. IEEE Ultrasonics Symp., pp. 445-448.
[55] Y. Cui, G. Du, Y. Zhang, H. Zhu, and B. Zhang, 2005, "Growth of ZnO(0 0 2) and ZnO(1 0 0) films on GaAs substrates by MOCVD," Journal of Crystal Growth, Vol. 282 (3-4), pp. 389-393.
[56] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, 2000, "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition," Materials Science and Engineering B, Vol. 71 (1-3), pp. 301-305.
[57] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, 2000, "ZnO growth on Si by radical source MBE," Journal of Crystal Growth, Vol. 214-215pp. 50-54.
[58] S. Chandra, V. Bhatt, and R. Singh, 2009, "RF sputtering: A viable tool for MEMS fabrication," Sadhana-Academy Proceedings in Engineering Sciences, Vol. 34 (4), pp. 543-556.
[59] H. Morkoç and Ü. Özgür, 2009, "General Properties of ZnO," in Zinc Oxide, ed: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1-76.
[60] Solar&Energy, "Report on Recent CIGS Solar Cell Technology (Part 2)," 2010.
[61] D. S. Rickerby and A. Matthews, 1991, Advanced surface coatings : a handbook of surface engineering: Glasgow : Blackie ; New York : Chapman and Hall.
[62] W. Menz, J. Mohr, and O. Paul, 2001, Microsystem Technology: Wiley-VCH Verlag GmbH.
[63] F. M. Penning, 1936, Physica, Vol. 3pp. 873-894.
[64] A. S. Penfold and J. A. Thornton, 1975, "Electrode type glow discharge apparatus," US Patent, No. 3884793.
[65] A. S. Penfold and J. A. Thornton, 1977, "Electrode type glow discharge apparatus," US Patent, No. 4031424.
[66] A. S. Penfold and J. A. Thornton, 1977, "Electrode type glow discharge method and apparatus," US Patent, No. 4030996.
[67] A. S. Penfold and J. A. Thornton, 1977, "Glow discharge method and apparatus," US Patent, No. 4041353.
[68] http://www.microchem.com/Prod-SU82000.htm. Available: http://www.microchem.com
[69] A. d. Campo and C. Greiner, 2007, "SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography," Journal of Micromechanics and Microengineering, Vol. 17 (6), pp. R81-R95.
[70] U. Levy, D. Mendlovic, and E. Marom, 2001, "Efficiency analysis of diffractive lenses," J. Opt. Soc. Am. A, Vol. 18 (1), pp. 86-93.
[71] T. Strek, 2010, "Finite Element Modelling of Sound Transmission Loss in Reflective Pipe " in Finite Element Analysis, D. Moratal, Ed., ed: InTech.
[72] R. Barauskas and V. Daniulaitis, 2000, "Simulation of ultrasonic wave propagation in solids," ULTRAGARSAS Vol. 37 (4), pp. 34-39.
[73] F. Moser, L. J. Jacobs, and J. Qu, 1999, "Modeling elastic wave propagation in waveguides with the finite element method," NDT and E International, Vol. 32 (4), pp. 225-234.
[74] A. Nandy, S. Mullick, S. De, and D. Datta, 2009, "Numerical Simulation of Ultrasonic Wave Propagation in Flawed Domain," in National Siminar & Exhibition on NDE, India.
[75] Y. Yoshino, 2009, "Piezoelectric thin films and their applications for electronics," Journal of Applied Physics, Vol. 105 (6), pp. 061623.
[76] S. H. Park, B. C. Seo, G. Yoon, and H. D. Park, 2000, "Two-step deposition process of piezoelectric ZnO film and its application for film bulk acoustic resonators," Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, Vol. 18 (5), pp. 2432-2436.
[77] Y. C. Lin, C. R. Hong, and H. A. Chuang, 2008, "Fabrication and analysis of ZnO thin film bulk acoustic resonators," Applied Surface Science, Vol. 254 (13), pp. 3780-3786.
[78] S. Singh, R. S. Srinivasa, and S. S. Major, 2007, "Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering," Thin Solid Films, Vol. 515 (24), pp. 8718-8722.
[79] Y. Suzaki, A. Kawaguchi, T. Murase, T. Yuji, T. Shikama, D.-B. Shin, and Y.-K. Kim, 2010, "Effect of substrate temperature on ZnO thin film fabrication by using an atmospheric pressure cold plasma generator," Physica Status Solidi (c).
指導教授 潘敏俊 審核日期 2013-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明