參考文獻 |
References
[1] H. P. Le, 1998, "Progress and Trends in Ink-jet Printing Technology," The Journal of Imaging Science and Technology, Vol. 42 (1), pp. 49-62.
[2] J. Brünahl, 2003, "Physics of Piezoelectric Shear Mode Inkjet Actuators," Universitetsservice US-AB, Stockholm,
[3] R. W. Wood and A. L. Loomis, 1927, "The physical and biological effects of high-frequency sound-waves of great intensity,," Philosophical Magazine, Vol. 4 (22),
[4] B. Hadimioglu, S. A. Elrod, D. L. Steinmetz, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, E. G. Rawson, and C. F. Quate, 1992, "Acoustic Ink Printing," in Proc. 1992 IEEE Ultrason. Symp., Orlando, FL, pp. 929-935.
[5] B. Hadimioglu, E. G. Rawson, R. Lujan, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, and C. F. Quate, 1993, "High-Efficiency Fresnel Acoustic Lenses," in Proc. 1993 IEEE Ultrason. Symp., Baltimore, MD, pp. 579-582.
[6] B. Hadimioglu, S. Elrod, and R. Sprague, 2001, "Acoustic Ink Printing: an Application of Ultrasonics for Photographic Quality Printing at High Speed," in Proc. 2001 IEEE Ultrason. Symp., Atlanta, GA, pp. 627-635.
[7] B. H. S. A. Elrod, B. T. Khuri-Yakub, E. G. Rawson, E. Richley, C. F. Quate, N. N. Mansour, and T. S. Lundgren, 1989, "Nozzleless Droplet Formation with Focused Acoustic Beams," Journal of Applied Physics, Vol. 65 (9), pp. 3441-3447.
[8] U. Demirci, 2006, "Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology," Journal of Microelectromechanical Systems, Vol. 15 (4), pp. 957-966.
[9] H. Yu, Q. Zou, J. W. Kwon, and E. S. Kim, 2007, "Liquid Needle," Journal of Microelectromechanical Systems, Vol. 16 (2), pp. 445-453.
[10] J. M. Meacham, M. J. Varady, F. L. Degertekin, and A. G. Fedorov, 2005, "Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling," Physics of Fluids, Vol. 17 (10), pp. 100605.
[11] S. C. Tsai, C. H. Cheng, W. Ning, Y. L. Song, C. T. Lee, and C. S. Tsai, 2009, "Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 56 (9), pp. 1968-1979.
[12] H. Fukumoto, J. Aizawa, H. Nakagawa, and H. Narumiya, 2000, "Printing with Ink Mist Ejected by Ultrasonic Waves," Journal of Imaging Science and Technology, Vol. 44 (5), pp. 398-405.
[13] K. T. Lovelady and L. F. Toye, 1981, "Liquid Drop Emitter," US Patent, No. 4308547.
[14] B. T. Chu and R. E. Apfel, 1982, "Acoustic Radiation Pressure Produced by a Beam of Sound," Journal of the Acoustical Society of America, Vol. 72 (6), pp. 1673-1687.
[15] G. S. Kino, 1987, Acoustic Waves: Devices, Imaging, and Analog Signal Processing: Prentice-Hall.
[16] M. Z. Sleva and W. D. Hint, 1990, "Design and construction of a PVDF Fresnel lens," Proc. 1990 IEEE Ultraso. Symp., Vol. 2pp. 821-826.
[17] S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, "Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Waves and Nozzle," in Proc. 1999 IEEE Ultraso. Symp., Caesars Tahoe, NV, pp. 695-698.
[18] H. Fukumoto, J. Aizawa, H. Matsuo, H. Narumiya, and K. Nakagawa, 2000, "Liquid Ejector Which Uses a High-Order Ultrasonic Waves to Eject Ink Droplets and Printing Apparatus Using Same," US Patent, No. 6155671.
[19] D. Huang and E. S. Kim, 2001, "Micromachined Acoustic-Wave Liquid Ejector," Journal of Microelectromechanical Systems, Vol. 10 (3), pp. 442-449.
[20] J. W. Kwon, Q. Zou, and E. S. Kim, 2002, "Directional Ejection of Liquid Droplets Through Sectoring Half-Wave-Band Sources of Self-Focusing Acoustic Transducer," IEEE International Micro Electro Mechanical Systems Conference, pp. 121-124.
[21] J. W. Kwon, H. Yu, Q. Zou, and E. S. Kim, 2006, "Directional droplet ejection by nozzleless acoustic ejectors built on ZnO and PZT," Journal of Micromechanics and Microengineering, Vol. 16 (12), pp. 2697.
[22] C.-Y. Lee, H. Yu, and E. S. Kim, 2006, "Acoustic Ejector with Novel Lens Employing Air-Reflectors," in Proc. 19th IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS 2006), Istanbul, Turkey, pp. 170-173.
[23] X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, S. Maeng, S. H. Kim, Y. J. Choi, D. S. Lee, N. M. Park, J. Park, and W. I. Milne, 2007, "ZnO film for application in surface acoustic wave device," Journal of Physics: Conference Series, Vol. 76pp. 012035.
[24] P. Defranould, 1981, "High Deposition Rate Sputtered ZnO Fin Films for BAW and SAW Applications," Proceedings of 1981 IEEE Ultrasonics Symposium, pp. 483-488.
[25] P. M. Martin, M. S. Good, J. W. Johnston, G. J. Posakony, L. J. Bond, and S. L. Crawford, 2000, "Piezoelectric films for 100-MHz ultrasonic transducers," Thin Solid Films, Vol. 379pp. 253-258.
[26] Y. Yoshino, Y. Ushimi, H. Yamada, and M. Takeuchi, 2003, "Zinc oxide piezoelectric thin films for bulk acoustic wave resonators," Murata Manufacturing Co., Ltd., 2-26-10 Tenjin, Nagaoka-kyo, Kyoto, Japan.,
[27] J. Golebiowski, 1999, "Fabrication of piezoelectric thin film of zinc oxide in composite membrane of ultrasonic microsensors," Journal of Materials Science, Vol. 34 (19), pp. 4661-4664.
[28] Z. Yan, X. Y. Zhou, G. K. H. Pang, T. Zhang, W. L. Liu, J. G. Cheng, Z. T. Song, S. L. Feng, L. H. Lai, J. Z. Chen, and Y. Wang, 2007, "ZnO-based film bulk acoustic resonator for high sensitivity biosensor applications," Applied Physics Letters, Vol. 90 (14), pp. 143503.
[29] Y. H. Hsu, J. Lin, and W. C. Tang, 2008, "RF sputtered piezoelectric zinc oxide thin film for transducer applications," Journal of Materials Science - Materials in Electronics, Vol. 19 (7), pp. 653-661.
[30] R. C. Lin, Y. C. Chen, and K. S. Kao, 2007, "Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators," Applied Physics A: Materials Science & Processing, Vol. 89 (2), pp. 475-479.
[31] J. W. Kwon, H. Y. Yu, and E. S. Kim, 2005, "Film transfer and bonding techniques for covering single-chip ejector array with microchannels and reservoirs," Journal of Microelectromechanical Systems, Vol. 14 (6), pp. 1399-1408.
[32] P. D. Edmonds, 1981, Methods of Experimental Physics vol. 19: Academic Press.
[33] R. Feng, 2001, Ultrasonics Handbook. Nanjing: Nanjing University Press.
[34] C. P. Lee and T. G. Wang, 1993, "Acoustic radiation pressure," J. Acoust. Soc. Am., Vol. 94 (2), pp. 1099-1109.
[35] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, 2000, Fundamentals of Acousitcs: John Wiley & Sons, Inc.,United States of America.
[36] K. W. Tay, 2005, "The Analysis and Design of Film Bulk Acoustic-Wave Resonators," Master, National Cheng Kung University,
[37] H. S. Tzou and M. C. Natori, 2001, "PIEZOELECTRIC MATERIALS AND CONTINUA," in Encyclopedia of Vibration, G. B. Editor-in-Chief: Simon, Ed., ed Oxford: Elsevier, pp. 1011-1018.
[38] F. Standards committee of the IEEE Ultrasonics, and Frequency Control Society. (1988). IEEE standard on piezoelectricity. Available: http://ieeexplore.ieee.org/servlet/opac?punumber=2511
[39] Z. M. Zhou, 2003, Piezoelectricity Mechanics: Chuan-Hwa Science & Technology Book Co., Ltd., Taipei, Taiwan.
[40] J. F. Rosenbaum, 1988, Bulk Acoustic Wave Theory and Devices: Artch House, Inc., Norwood, Massachusetts
[41] S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, "Ink mist jet generation using low frequency focused ultrasonic waves and nozzle," in Proceedings of IEEE Ultrasonics Symposium, pp. 695-698.
[42] J. Aizawa, H. Fukumoto, and M. Takeda, 2004, "Droplet Ekector and Liquid Supply Tube," US Patent, No. 6692106B2.
[43] S. C. Chan, M. Mina, S. S. Udpa, L. Udpa, and W. Lord, 1996, "Finite Element Analvsis of Multilevel Acoustic Fresnel Lenses," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43 (4), pp. 670-677.
[44] J. Aizawa, H. Fukumoto, and M. Takeda, 2003, "Liquid Ejector," US Patent, No. 6692106B2.
[45] C. F. Quate, E. G. Rawson, and B. Hadimioglu, 1991, "Muti-Discrete-Phase Fresnel Acoustic Lenses and Their Application to Acoustic Ink Printing," US Patent, No. 5041849.
[46] H. Xiao, 2001, Introduction to Semiconductor Manufacturing Technology: Prentice Hall, New Jersey.
[47] W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, 2005, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," Journal of Applied Physics, Vol. 97 (5), pp. 054907.
[48] F. F. C. Duval, R. A. Dorey, R. W. Wright, Z. R. Huang, and R. W. Whatmore, 2004, "Fabrication and modeling of high-frequency PZT composite thick film membrane resonators," IEEE transactions on ultrasonics, ferroelectrics and frequency control, Vol. 51 (10), pp. 1255-1261.
[49] Q. F. Zhou, K. K. Shung, and Y. Huang, 2007, "Improvement electrical properties of sol-gel derived lead zirconate titanate thick films for ultrasonic transducer application," Journal of Materials Science, Vol. 42 (12), pp. 4480-4484.
[50] S. F. Shao, J. L. Zhang, Z. Zhang, P. Zheng, M. L. Zhao, J. C. Li, and C. L. Wang, 2008, "High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route," Journal of Physics D: Applied Physics, Vol. 41 (12),
[51] K. Nam, Y. Park, B. Ha, D. Shim, I. Song, J. Pak, and G. Park, 2005, "Piezoelectric properties of aluminum nitride for thin film bulk acoustic wave resonator," Journal of the Korean Physical Society, Vol. 47pp. S309-S312.
[52] K.-W. Tay, P.-H. Sung, Y.-C. Lin, and T.-J. Hung, 2008, "Characteristics of ZnO thin film for film bulk acoustic-wave resonators," Journal of Electroceramics, Vol. 21 (1), pp. 178-183.
[53] Y. Lin, C. Hong, and H. Chuang, 2008, "Fabrication and analysis of ZnO thin film bulk acoustic resonators," Applied Surface Science, Vol. 254 (13), pp. 3780-3786.
[54] J. C. Zesch, B. Hadimioglu, B. T. Khuri-Yakub, M. Lim, R. Lujan, J. Ho, S. Akamine, D. Steinmetz, C. F. Quate, and E. G. Rawson, 1991, "Deposition of highly oriented low-stress ZnO films," in Proc. IEEE Ultrasonics Symp., pp. 445-448.
[55] Y. Cui, G. Du, Y. Zhang, H. Zhu, and B. Zhang, 2005, "Growth of ZnO(0 0 2) and ZnO(1 0 0) films on GaAs substrates by MOCVD," Journal of Crystal Growth, Vol. 282 (3-4), pp. 389-393.
[56] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, 2000, "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition," Materials Science and Engineering B, Vol. 71 (1-3), pp. 301-305.
[57] K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe, and H. Takasu, 2000, "ZnO growth on Si by radical source MBE," Journal of Crystal Growth, Vol. 214-215pp. 50-54.
[58] S. Chandra, V. Bhatt, and R. Singh, 2009, "RF sputtering: A viable tool for MEMS fabrication," Sadhana-Academy Proceedings in Engineering Sciences, Vol. 34 (4), pp. 543-556.
[59] H. Morkoç and Ü. Özgür, 2009, "General Properties of ZnO," in Zinc Oxide, ed: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1-76.
[60] Solar&Energy, "Report on Recent CIGS Solar Cell Technology (Part 2)," 2010.
[61] D. S. Rickerby and A. Matthews, 1991, Advanced surface coatings : a handbook of surface engineering: Glasgow : Blackie ; New York : Chapman and Hall.
[62] W. Menz, J. Mohr, and O. Paul, 2001, Microsystem Technology: Wiley-VCH Verlag GmbH.
[63] F. M. Penning, 1936, Physica, Vol. 3pp. 873-894.
[64] A. S. Penfold and J. A. Thornton, 1975, "Electrode type glow discharge apparatus," US Patent, No. 3884793.
[65] A. S. Penfold and J. A. Thornton, 1977, "Electrode type glow discharge apparatus," US Patent, No. 4031424.
[66] A. S. Penfold and J. A. Thornton, 1977, "Electrode type glow discharge method and apparatus," US Patent, No. 4030996.
[67] A. S. Penfold and J. A. Thornton, 1977, "Glow discharge method and apparatus," US Patent, No. 4041353.
[68] http://www.microchem.com/Prod-SU82000.htm. Available: http://www.microchem.com
[69] A. d. Campo and C. Greiner, 2007, "SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography," Journal of Micromechanics and Microengineering, Vol. 17 (6), pp. R81-R95.
[70] U. Levy, D. Mendlovic, and E. Marom, 2001, "Efficiency analysis of diffractive lenses," J. Opt. Soc. Am. A, Vol. 18 (1), pp. 86-93.
[71] T. Strek, 2010, "Finite Element Modelling of Sound Transmission Loss in Reflective Pipe " in Finite Element Analysis, D. Moratal, Ed., ed: InTech.
[72] R. Barauskas and V. Daniulaitis, 2000, "Simulation of ultrasonic wave propagation in solids," ULTRAGARSAS Vol. 37 (4), pp. 34-39.
[73] F. Moser, L. J. Jacobs, and J. Qu, 1999, "Modeling elastic wave propagation in waveguides with the finite element method," NDT and E International, Vol. 32 (4), pp. 225-234.
[74] A. Nandy, S. Mullick, S. De, and D. Datta, 2009, "Numerical Simulation of Ultrasonic Wave Propagation in Flawed Domain," in National Siminar & Exhibition on NDE, India.
[75] Y. Yoshino, 2009, "Piezoelectric thin films and their applications for electronics," Journal of Applied Physics, Vol. 105 (6), pp. 061623.
[76] S. H. Park, B. C. Seo, G. Yoon, and H. D. Park, 2000, "Two-step deposition process of piezoelectric ZnO film and its application for film bulk acoustic resonators," Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films, Vol. 18 (5), pp. 2432-2436.
[77] Y. C. Lin, C. R. Hong, and H. A. Chuang, 2008, "Fabrication and analysis of ZnO thin film bulk acoustic resonators," Applied Surface Science, Vol. 254 (13), pp. 3780-3786.
[78] S. Singh, R. S. Srinivasa, and S. S. Major, 2007, "Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering," Thin Solid Films, Vol. 515 (24), pp. 8718-8722.
[79] Y. Suzaki, A. Kawaguchi, T. Murase, T. Yuji, T. Shikama, D.-B. Shin, and Y.-K. Kim, 2010, "Effect of substrate temperature on ZnO thin film fabrication by using an atmospheric pressure cold plasma generator," Physica Status Solidi (c). |