博碩士論文 983206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.118.166.79
姓名 林書暉(Shu-hui Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
(Dynamic variations of water-soluble inorganic ions at Mountain Lulin from different air masses in 2011)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 每年春天中南半島及亞洲大陸生質燃燒旺盛,高濃度污染物會隨盛行西風傳輸。在傳輸過程中,氣膠前驅物經由各種化學反應影響,產生二次氣膠,伴隨原生氣膠對太陽輻射進行散射和吸收,以及形成雲凝結核對氣候變遷產生重大影響。本文從2011年3月至4月,在位於西風帶下風的臺灣鹿林山大氣背景監測站(海拔高度2,862公尺)觀測大氣氣膠,目的是瞭解不同氣流來源傳輸氣膠特性動態變化,推論雲霧、超細微粒生成事件可能影響氣膠特性變化機制,並以模式模擬推估不同氣流來源氣膠pH值。
  觀測期間鹿林山逆推氣流軌跡主要是生質燃燒(BB)、自由大氣、人為污染(Anthropogenic)三種類型。當受到生質燃燒影響時,CO日變化趨勢減弱,但是氣體NOy、氣膠吸光係數、氣膠散光係數,仍呈現規律日變化,代表鹿林山監測站,可能還受到本地谷風傳輸影響。透過更能代表自由大氣的夜晚數據,可以評估生質燃燒PM2.5與PM10氣膠質量濃度相對於背景大氣各增加為3.6、3.5倍;受BB類型與谷風傳輸的本地污染交互影響時,各增加為3.6、3.8倍;顯示受到生質燃燒氣流影響時,即使加上本地污染,也僅造成粗氣膠略微增加。
  透過即時氣膠水溶性離子層析儀(Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph, PILS-IC),顯示短時間SO42-、NO3-、NH4+與K+趨勢關係良好,加上氮的氧化比值(Nitrogen Oxidation Ratio, NOR)隨著雲霧事件發生而增大,表示BB類型氣流與谷風傳輸的本地污染整合作用,且受到異相反應或者光化學反應影響。此外,在凌晨時段容易觀測到相對溼度下降、O3濃度上升,推論是受到邊界層高度下降影響,同時也發生氣溫和氣膠Ca2+、Mg2+離子濃度上升現象,這可能是受到夜晚山風影響。
  發生雲霧事件時,掃描移動度微粒粒徑分布監測儀(Scanning Mobility Particle Sizer, SMPS)量測到氣膠數目濃度粒徑分布以accumulation mode為主,與生質燃燒氣膠主要成分粒徑一致,表示雲霧事件受到生質燃燒氣團傳輸影響。另一方面,超細微粒生成事件氣膠數目濃度粒徑分布呈現出accumulation mode與Aitken mode,顯示氣膠在超細微粒生成發生的核凝現象。值得提出的是PILS-IC觀測到氣膠水溶性NO2-離子,表示有光化學反應發生,因為雲霧液滴NO2可以透過光化學反應生成HNO3或HONO。在超細微粒事件日Aitken mode的尖峰粒徑約為30 nm,粒徑很小表示光化學反應可能發生在觀測站附近。本文觀測期間鹿林山超細微粒生成事件僅發生三次,顯示大多數光化學反應地點,並不在測站周邊。
  最後,透過AIM2模式模擬觀測期間不同氣流來源氣膠pH值,變動範圍約在0至-2之間。與文獻相較,鹿林山氣膠pH值明顯較低,推論是受到傳輸的氣膠水溶性離子以及大氣相對溼度影響。利用多元廻歸分析評估氣膠pH值影響因子,顯示SO42-、NO3-為負影響,相對濕度、NH4+為正影響。
摘要(英) The dense pollutants from active biomass burning (BB) in Indochina and Asian mainland are transported by prevailing westerly every spring. During long-range transport, secondary aerosol produced from aerosol precursors through various chemical reactions accompanying with primary aerosol play an important role in climate change by scattering and absorbing solar radiation and/or forming cloud condensation nuclei. This study observed atmospheric aerosol under prevailing westerly at Lulin Atmospheric Background Station (LABS, 2,862 m a.s.l.) in Taiwan from March to April in 2011. The objectives are to understand dynamic variations of aerosol properties of different air masses, to infer possible mechanisms affecting variations of aerosol properties during cloud-fog and ultrafine particle formation events, and to estimate aerosol pH values of different air masses.
The BB, free troposphere, and anthropogenic are the three major types of backward trajectories at LABS during the observation period. The diurnal variation of CO was weakening, while NOy, aerosol absorption and scattering coefficients were keeping regular diurnal patterns when under the influence of BB. This may indicate the influence of local valley breeze on LABS. Through more representative nighttime data, the concentrations of PM2.5 and PM10 from BB relative to background air are estimated to increase to 3.5 and 3.6 folds, respectively, while the increases are 3.6 and 3.8 folds, respectively, when adding local valley breeze transport to BB. This shows that coarse particles are slightly increased with the addition of local pollution to the transported BB plume.
The well correlated short term SO42-、NO3-、NH4+, and K+ concentrations measured by Particle-Into-Liquid-Sampler coupled to an Ion Chromatograph (PILS-IC) plus higher values of Nitrogen Oxidation Ratio (NOR) in cloud-fog events implies aerosol properties not only affected by the integration of BB type of air masses with local valley breeze but also by the heterogeneous or photochemical reactions. In addition, the reduced relative humidity (RH) and increased O3 concentration during early morning is considered to be the effect of lowering boundary layer. Meanwhile, the increased concentrations of Ca2+ and Mg2+ accompanies with high ambient temperature are inferred to be caused by mountain breeze during the night.
Aerosol number size spectra measured by Scanning Mobility Particle Sizer (SMPS) are dominated by accumulation mode for cloud-fog events, which is consistent with the size ranges of major chemical species of BB aerosol. This demonstrates the effect of BB plume on cloud-fog events. In contrast, aerosol number size spectra are presented with both accumulation and Aitken modes to show the occurrence of nucleation during the events of ultrafine particle formation. It is noted that NO2- is observed by PILS-IC to evidence the occurrence of photochemical reactions because HNO3 or HONO can be formed from photochemical reactions of NO2 in cloud-fog droplets. The peak diameter of Aiken mode is around 30 nm, which indicates photochemical reactions may occur near LABS because the peak size is small. During the observation period, only three events of ultrafine particle formation occurred, which implies most photochemical reaction sites are not near LABS.
Finally, aerosol pH values from various air masses were modeled through AIM2 model to reveal in a range of 0 to -2. Compared with literature values, the pH range of LABS aerosol is apparently lower, which is thought due to the influence of transported water-soluble ions and atmospheric RH. Employing multiple linear-regression analysis on factors influencing aerosol pH values, SO42- and NO3- are found having negative effect, while RH and NH4+ are positive.
關鍵字(中) ★ 生質燃燒氣膠
★ 氣流來源傳輸與氣膠特性
★ 雲霧氣膠特性
★ 超細微粒生成
★ 氣膠pH值模擬
關鍵字(英) ★ biomass burning aerosol
★ transported air masses and aerosol properties
★ cloud-fog aerosol properties
★ aerosol pH simulation
論文目次 摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xvi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠來源與組成 3
2.2 氣膠水溶性離子特性 4
2.2.1 硫酸鹽、硝酸鹽與銨鹽反應與生成 4
2.2.2 不同地區氣膠水溶性離子特性 6
2.2.3 氣膠中和 10
2.3 雲霧氣膠的研究方法 11
2.4 氣膠pH值 12
2.4.1 模式模擬氣膠pH值 12
2.4.2 氣膠潮解點 14
2.5 氣膠微粒散光係數的簡易模式 14
第三章 研究方法 15
3.1 研究架構 15
3.2 採樣地點與採樣週期 17
3.3 採樣設備 17
3.3.1 手動採樣器 17
3.3.2 自動監測儀器 23
3.3.3 大氣氣膠連續監測系統 26
3.3.4 粒徑分布監測系統 33
3.3.5 其他連續監測儀器 37
3.4 逆軌跡分類 38
第四章 結果與討論 40
4.1 鹿林山觀測期間氣膠各成份變化 40
4.1.1 RP3500(PM10)與PILS-IC(PM10)氣膠水溶性離子比對 40
4.1.2 觀測期間氣膠各成分時間變化趨勢 44
4.1.3 氣流逆軌跡分類 51
4.1.4 不同氣流來源傳輸背景大氣氣膠質量濃度變化 57
4.2 不同氣流來源氣膠水溶性離子傳輸變化 59
4.2.1 第一次高濃度污染時段(3月15日至3月18日) 61
4.2.2 第二次高濃度污染時期(3月22日至3月29日) 66
4.2.3 第三次高濃度污染時期(4月1日至4月14日) 73
4.2.4 不同氣流來源傳輸氣膠水溶性離子傳輸變化 81
4.3 鹿林山雲霧事件氣膠動態變化 84
4.3.1 不同氣流類型對雲霧事件的影響 85
4.3.2 雲霧事件發生前後鹿林山氣膠變化 87
1.第一次雲霧事件(2011年4月1日) 89
2.第二次雲霧事件(2011年4月4日) 97
3.第三次雲霧事件(2011年4月9日) 105
4.3.3 雲霧事件發生過程歸納 113
4.4 鹿林山超細微粒事件氣膠動態變化 117
4.4.1 超細微粒事件日個案探討 118
1.第一次超細微粒事件日(2011年3月29日) 118
2.第二次超細微粒事件日(2011年4月2日) 124
3.第三次超細微粒事件日(2011年4月8日) 131
4.4.2 光化學事件與氣膠水溶性離子關係 138
4.5 鹿林山氣膠pH值動態變化 140
4.5.1 AIM2模擬氣膠水溶性離子組成 140
4.5.2 AIM2模擬氣膠pH值 144
第五章 結論與建議 149
5.1 結論 149
5.2 建議 151
第六章 參考文獻 152
附錄一 口試委員意見與回覆 161
附錄二 2011年3月15日至4月14日鹿林山觀測期間逆推軌跡圖 171
附錄三 2011年3月10日至4月15日鹿林山觀測期間衛星火點圖 179
參考文獻 第六章 參考文獻
Acker, K., Beysens, D., Moller, D., 2008. Nitrite in dew, fog, cloud and rain water: An indicator for heterogeneous processes on surfaces. Atmospheric Research 87, 200–212.
Ahrens, C.D., 2007. Meteorology today: An introduction to weather, climate, and the environment, 8th ed., Thomson, Brooks/Cole.
Aikawa, M., Hiraki, T., Shoga, M., Tamaki, M., 2005. Chemistry of fog water collected in the Mt. Rokko area (Kobe City, Japan) between April 1997 and March 2001. Water, Air, and Soil Pollution 160, 373–393.
Baltensperger, U., Schwikowski, M., Jost, D.T., Nyeki, S., Gaggeler, H.W., Poulida, O., 1998. Scavenging of atmospheric constituents in mixed phase clouds at the high-alpine site jungfraujoch part I: Basic concept and aerosol scavenging by clouds. Atmospheric Environment 32, 23, 3975–3983.
Baumbach, G., Vogt, U., 1999. Experimental determination of the effect of mountain-valley breeze circulation on air pollution in the vicinity of Freiburg. Atmospheric Environment 33, 4019–4027.
Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F., Arduini, J., Bonafe, U., Calzolari, F., Colombo, T., Decesari, S., Di Biagio, C., di Sarra, A.G., Evangelisti, F., Duchi, R., Facchini, M.C., Fuzzi, S., Gobbi, G.P., Maione, M., Panday, A., Roccato, F., Sellegri, K., Venzac, H., Verza, G.P., Villani, P., Vuillermoz, E., Cristofanelli, P., 2010. Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmospheric Chemistry and Physics 10, 7515-7531.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology 30, 582–600.
Chang, S.Y., Fang, G.C., Chou, C.C.K., Chen, W.N., 2006. Source identifications of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004. Chemosphere 65, 792–801.
Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631–4640.
Chi, K.H., Lin, C.Y., Yang, C.F.O., Wang, J.L., Lin, N.H., Sheu, G.R., and Lee, C.T., 2010. PCDD/F measurement at a high-altitude station in Central Taiwan: Evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environmental Science and Technology 44, 2954-2960.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998a. Thermodynamic model of the system H+-NH4+-SO42--NO3--H2O at tropospheric temperatures. Journal of Physical Chemistry A 102, 12, 2137–2154.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998b. Thermodynamic model of the system H+-NH4+-SO42--NO3--H2O at 298.15 K. Journal of Physical Chemistry A 102, 12, 2155–2171.
Clegg, S.L., Seinfeld, J.H., Edney, E.O., 2003. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii-Stokes-Robinson approach. Journal of Aerosol Science 34, 667–690.
Clegg, S.L., Seinfeld, J.H., 2004. Improvement of the Zdanovskii-Stokes-Robinson Model for Mixtures Containing Solutes of Different Charge Types. Journal of Physical Chemistry A 108, 1008-1017.
Clobeck, I., Lazaridis, M., 2010. Aerosols and environmental pollution. Naturwissenschaften 97, 117-131.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K.N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Coen, C.M., Petzold, A., and Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 8, 407-423.
Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P.P., Lehtinen, K.E.J., 2005. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environment Research, vol. 10, 323–336.
Draxler, R.R., Rolph, G.D., (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD (2010).
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols. Atmospheric Chemistry and Physics 7, 4639–4659.
García-García, F., Zarraluqui, V., 2008. A fog climatology for Mexico. DIE ERDE 139 (1–2), 45–59.
He, Y., Zhou, X.L., Hou, J., Gao, H.L., Bertman, S.B., 2006. Importance of dew in controlling the air-surface exchange of HONO in rural forested environments. Geophysical Research Letters, 33, L02813.
Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H., 1997. Formation of organic aerosols from oxidation of biogenic hydrocarbons. Journal of Atmospheric Chemistry 26, 189–222.
Huang, X., Qiu, R., Chan, C.K., Kant, P.R., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42-]=1.5. Atmospheric Research 99, 488–495.
Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I., 1998. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angles area. Environmental Science and Technology 32, 1153–1161.
Koutrakis, P., Sioutas, C., Ferguson, S.T., Wolfson, J.M., Mulik, J.D., Burton, R.M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental Science and Technology 27, 2497–2501.
Krivácsy, Z., Hoffer, A., Sárvári, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingratner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment 35, 6231–6244.
Kurten, T., Torpo, L., Sundberg, M.R., Kerminen, V.M., Vehkamaki, H., Kulmala, M., 2007. Estimating the NH3:H2SO4 ratio of nucleating clusters in atmospheric conditions using quantum chemical methods.
Lamb, D., Verlinde, J., 2011. Physics and Chemistry of Clouds. Cambridge University Press, United Kingdom.
Lee, C.T., Hsu, W.C., 1999. Effects of local pollution and environmental humidity on aerosol-size spectra and light-scattering coefficients in southern Taiwan. Environment International 25, 4, 433–441.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, S.C., Wang, S.H., Huang, H., Chen, H.W., Liu, Y.L., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784–5794.
Lee, T., Yu, X.Y., Kreidenweis, S.M., Malm, W.C., Collett, J.L., 2008. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6655–6669.
Li, C., Tsay, S.C., Hsu, N.C., Kim, J.Y., Howell, S.G., Huebert, B.J., Ji, Q., Jeong, M.J., Wang, S.H., Hansell, R.A., Bell, S.W., 2012. Characteristics and composition of atmosphericaerosols in Phimai, central Thailand during BASE-ASIA. Atmospheric Environment (Special issue).
Murray, G., Kimball, K., Hill, L., Allen, G., Wolfson, J., Pszenny, A., Seidel, T., Doddridge, B., Boris, A., 2009. A comparison of fine particle and aerosol strong acidity at the interface zone (1540 m) and within (452 m) the planetary boundary layer of the Great Gulf and Presidential-Dry River Class I Wildernesses on the Presidential Range, New Hampshire USA. Atmospheric Environment 43, 3605-3613.
Nyeki, S., Baltensperger, U., Colbeck, I., Jost, D.T., Weingartner, E., Gäggeler, H.W., 1998. The Jungfraujoch high-alpine research station (3454 m) as a background clean continental site for the measurement of aerosol parameters. Journal of Geophysical Research, vol. 103, No. D6, 6097–6108.
Olszyna, K.J., Bairai, S.T., Tanner, R.L., 2005. Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountains National Park. Atmospheric Environment 39, 4593–4606.
Pathak, R.K., Yao, X.H., Lau, A.K.H., Chan, C.K., 2003. Acidity and concentrations of ionic species of PM2.5 in Hong Kong. Atmospheric Environment 37, 1113–1124.
Pathak, R.K., Louie, P.K.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965–2974.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711–1722.
Raizenne, M., Neas, L.M., Damokosh, A.I., Dockery, D.W., Spengler, J.D., Koutrakis, P., Ware, J.H., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: Pulmonary function. Environmental Health Perspectives, 104, 5, 506–514.
Reid, J.S., Koppmann, R., Eck, T.F., Eleuterio, D.P., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799–825.
Rohrer, F., Bohn, B., Brauers, T., Bruning, D., Johnen, F.J., Wahner, A., Kleffmann, J., 2005. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics 5, 2189–2201.
Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is daily mortality associated specifically with fine particles? Air and Waste Management Association 46, 927–939.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York, 440-444.
Sellegri, K., Laj, P., Venzac, H., Boulon, J., Picard, D., Villani, P., Bonasoni, P., Marinoni, A., Cristofanelli, P., Vuillermoz, E., 2010. Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5079 m), Nepal. Atmospheric Chemistry and Physics 10, 10679-10690.
Sheu, G.R., Lin, N.H., Wang, J.L., Lee, C.T., Ou Yang, C.F., Wang, S.H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Sioutas, C., Wang, P.Y., Ferguson, S.T., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885–895.
Stokes, R.H., Robinson, R.A., 1966. Interactions in aqueous non-electrolyte solutions. 1. Solute- solvent equilibria. The Journal of Physical Chemistry 70, 2126–2130.
Suzuki, I., Hayashi, K., Igarashi, Y., Takahashi, H., Sawa, Y., Ogura, N., Akagi, T., Dokiya, Y., 2008. Seasonal variation of water-soluble ion species in the atmospheric aerosols at the summit of Mt. Fuji. Atmospheric Environment 42, 8027–8035.
Svendby, T.M., Lazaridis, M., Torseth, K., 2008. Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry 59, 25–46
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649–1656.
Wang, Y., Zhuang, G.S., Tang, A.H., Yuan, H., Sun, Y.L., Chen, S.A., Zheng, A.H., 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment 39, 3771–3784.
Wang, Y., Zhuang, G.S., Zhang, X.Y., Huang, K., Xu, C., Tang, A.H., Chen, J.M., An, Z.S., 2006. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment 40, 2935–2952.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, Jr., J.L., Wang, W., 2011. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434–442.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Magliano, K.L., 2008. Estimating aerosol light scattering at the Fresno Supersite. Atmospheric Environment 42, 1186–1196.
Wu, W.S., Wang, T., 2007. On the performance of a semi-continuous PM2.5 sulphate and nitrate instrument under high loadings of particulate and sulphur dioxide. Atmospheric Environment 41, 5442–5451.
Xue, J., Lau, A.K.H, Yu, J.Z., 2011. A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric Environment 45, 7081–7088.
Yao, X.H., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmospheric Environment 40, 2835–2844.
Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X., Wang, Z., Gao, J., Zhang, Q., Wang, W., 2009. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 ma.s.l.) in central-eastern China. Journal of Atmospheric Chemistry 64, 107–127.
Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., Wang, W., 2012. Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric Environment 51, 11–20.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843–853.
張佑嘉,2011,中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許紹鵬,2010,鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011,鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-te Lee) 審核日期 2013-2-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明