所別:<u>光電科學與工程學系碩士班 不分組(一般生)</u> 科目:<u>電子學</u> 共<u>2</u>頁 第<u>/</u>頁 光電科學與工程學系碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

- 1. Assume the transistor in the circuit in Fig.1 has parameters of $V_{\rm BE(on)}=0.7$ V, current gain $\beta=120$, thermal voltage $V_{\rm T}=0.026$ V, and Early voltage $V_{\rm A}=100$ V. The resistors are set as $R_1=1$ K Ω and $R_2=1$ K Ω .
 - (a) Determine the Q-point (working point) of transistor (V_{CEQ} , I_{CQ}). (5%)
 - (b) Define the load line equation, sketch the load line and plot the Q-point for transistor. (5%)
 - (c) Determine the mid-band small-signal trans-resistance $\hat{R}_{in} = v_{O}/i_{S}$. (5%)

Fig. 1

- 2. A current-to-voltage converter with a phototransistor that converts light intensity into an output current $i_{\rm C}$ is shown in Fig. 2(a). The transistor has a finite capacitor $C_{\rm CE}$ and must be biased as shown in Fig. 2(a). The current-to-voltage converter realized using an op-amp has a finite open-loop differential gain $A_{\rm od}$. The transistor output versus input characteristics are shown in Fig. 2(b).
 - (a) Determine the input resistance R_{in} of current-to-voltage converter. (5%)
 - (b) Define the load line equation and sketch the load line for transistor. (5%)
 - (c) Determine the small-signal trans-impedance $Z_{\rm in} = v_{\rm O}/i_{\rm C}$ of current-to-voltage converter under considering the frequency response. (10%)
 - (d) Determine the higher corner (-3 dB) frequency $f_{\rm H}$ of $Z_{\rm in}$. (5%)

注:背面有試題

所別:<u>光電科學與工程學系碩士班 不分組(一般生)</u> 科目:<u>電子學 共 2 頁 第 2 頁 光電科學與工程學系碩士班 不分組(在職生)</u>

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

- 3. The circuit in Fig. 3(a) is used to drive an LED with a voltage source. Assume the op-amp is ideal. The resistors are set as $R_1 = 1$ K Ω , $R_F = 1$ K Ω , and $R_2 = 1$ K Ω . The LED has piecewise linear parameter of turn on (cut-in) voltage $V_r = 3$ V and forward diode resistance $r_f = 0$ Ω . If the triangular wave, shown in Fig. 3(b), is applied.
 - (a) Plot i_D versus v_I for the circuit. (5%)
 - (b) Plot v_0 versus time for the circuit. (5%)

4. Consider the circuit shown in Fig. 4 where $R = 19 \text{ k}\Omega$. V is 10 V which is superimposed a 60 Hz sinusoid of 1-V peak amplitude. The diode has a 0.5-V voltage drop at 0.5-mA current. The constant n in diode equation is 2 for silicon. Calculate the amplitude of the sine-wave across the diode. (15%)

Fig. 4

- 5. An enhancement-type NMOS transistor with threshold voltage $V_t = 2$ V has its source terminal grounded and a 3-V dc source connected to the gate. The drain is connected to a dc voltage of 3 V. The process trans-conductance parameter, $\mu_n C_{ox}$, is 40 μ A/V². The width and the length of the channel region are W = 100 μ m and L = 2 μ m, respectively. Neglect the dependence of i_D on V_{GS} in saturation. Find the drain current. (20%)
- 6. Calculate the unity-gain frequency f_T for the n-channel MOSFET whose the capacitance between gate-source and gate-drain, C_{gs} and C_{gd} , are 30 fF and 2 fF, respectively. Assume that the trans-conductance g_m is 0.2 mA/V. (15%)

