博碩士論文 992203605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.226.226.151
姓名 古杉力(Rizmahardian Ashari Kurniawan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 HYBRID BIOFUEL CELL BASED ON CARBON NANOTUBE COVALENTLY ATTACHED LACCASE CATHODE AND POLYANILINE-COATED CARBON NANOTUBE-SUPPORTED Pt BIMETALLIC ANODE
(HYBRID BIOFUEL CELL BASED ON CARBON NANOTUBE COVALENTLY ATTACHED LACCASE CATHODE AND POLYANILINE-COATED CARBON NANOTUBE-SUPPORTED Pt BIMETALLIC ANODE)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於經濟以及環境需求,我們對於產能研究需求日益增加。然而,混和生物燃料電池正是符合我們目前所需的發展。本篇研究使用奈米碳管(CNT)-Laccase複合材料作為陰極,而陽極使用白金雙合金沉降於polyaniline-coated的奈米碳管(PANICNT)。CNT-Laccase藉由傅立葉轉換紅外光譜儀(FTIR)、表面電子顯微鏡(SEM)、熱重分析儀(TGA)來作為性質分析。CNT-Laccase藉由FTIR可看出具有官能基結構,例如:氫氧根、胺基以及氨基。並且由SEM顯示出將laccase固定於奈米碳管不但不會破壞結構,並且可以有效地聚集CNT-Laccase。將此結構做元素分析發現,氧原子以及氮原子的比例可進一步確認是laccase接於CNT上。因此,FTIR和SEM在此證明此實驗能成功將laccase鍵接於CNT上。TGA顯示CNT-Laccase經歷了兩個分解溫度,分別文310ºC和670ºC,此實驗結果可以說明CNT-Laccase是分為CNT以及Laccase兩個部份來分解。固定相的Laccase同時也改變了CNT的熱穩定性。將Laccase固定於CNT上也同時影響了Laccase的酵素活性,並且在高溫以及中性條件下使其穩定性也同時增強;我們知道在65ºC時,Laccase就已失去其本身活性。然而CNT-Laccase在45ºC時仍然可以維持其57.12%的酵素活性。CNT-laccase在pH=7時的活性大約7.04%,在pH=5時表現出的活性比Laccase單體更高。CNT-Laccase在沒有加入ABTS(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)的情形之下無法作為氧還原的媒介。在本實驗中,ABTS作為電極以及Laccase活性部位的電子轉移媒介。然而氧還原活性的效能是取決於高分子黏著劑的種類與其組成。相較於polyvinyl alcohol(PVA),Nafion能更有效地提供適合的化學環境進行氧還原。使用Nafion與緩衝溶液1:10的電流密度為1.31 mA/cm2,高於使用PVA的1.01 mA/cm2。增加高分子黏著劑的比例由1:2至1:1時,則會逐漸破壞氧還原活性。
此外,在陽極的部分,我們以葡萄糖做氧化測試來測得其活性,所測試的合金分別為PtSn,、Pt3Sn、Pt,和 PtPb。我們藉由X光繞射儀(XRD)測得白金的FCC結構的變化進而確定合金的形成。而我們使用穿隧式電子顯微鏡(TEM)來確定上述合金的確能夠沉降並附著於PANICNT的表面。上述合金皆能在中性及鹼性條件下氧化葡萄糖。活性的表現則是由第二金屬的存在而改變。PtSn/PANICNT在本實驗中有最高的電流密度以及靈敏度,進而推斷其展現了最高的活性。其電流密度在鹼性以及中性條件下皆為8.27 mA/cm2。PtSn/PANICNT在0.0伏特以及0.1伏特的條件下分別測得39.64 μAcm-2mM-1和39.54 μAcm-2mM-1的靈敏度。另一方面,PtPb/PANICNT在-0.1V高靈敏度(40.33 μAcm-2mM-1)的條件下可使葡萄糖的氧化電位降低至。
摘要(英) Economic and environmental requirements have motivated research in energy generation. Here, hybrid biofuel cell have been developed to meet the need. The cathode composed of laccase immobilized on CNT (CNT-Laccase), while the anode is Pt bimetallic alloy deposited on polyaniline-coated carbon nanotube (PANICNT). CNT-Laccase was characterized by Fourier Transform Infrared (FTIR) Spectrophotometry, Surface Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). CNT-Laccase FTIR spectra showed that the structure contain several functional groups, such as hydroxyl, amine and amide. SEM figures revealed that immobilization didn’t destroy tube structure of CNT, but it promoted aggregation. Elemental analysis of the structure displayed oxygen and nitrogen atoms distribution indicating the presence of Laccase. Therefore, FTIR and SEM reasserted successful immobilization. TGA reveal CNT-Laccase possesses two decomposition temperatures at 310ºC and 670ºC, that are related to decomposition of Laccase part and CNT part of CNT-Laccase, respectively. Laccase immobilization has changed CNT thermo stability. Immobilization also affected Laccase enzymatic activity where it boosts the stability at high temperature and neutral pH. At temperature 65ºC, free Laccase completely loss its activity, while CNT-Laccase still retaining 57.12% of its activity at 45ºC. The activity of CNT laccase at pH 7 was 7.04% of activity at pH 5 which was higher than that of free Laccase. CNT-Laccase was not able to perform oxygen electroreduction without addition ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediator. In our case, ABTS was needed to shuttle electrons from electrode to Laccase active site. Performance of oxygen electroreduction activity was also determined by type and composition of binding polymer. Nafion was able to provide better environment for oxygen electroreduction activity compare to polyvinyl alcohol (PVA). Current density resulted in using Nafion in ratio 1:10 to buffer volume was 1.31 mA/cm2, which was higher than that of PVA (1.01 mA/cm2). Increasing binding polymer ratio into 1:2 and 1:1 undermined oxygen electroreduction activity.
On the anode side, the alloy such as PtSn, Pt3Sn, Pt, and PtPb were tested to analyze their activity toward glucose electrooxidation. The formation of alloy was confirmed by shifted Pt fcc patterns on X-ray Diffraction (XRD) analysis. The alloys were able to be deposited on PANICNT surface as confirmed by Transmission Electron Microscopy (TEM) images. All the metal alloys were able to oxidize glucose in neutral and basic solution. The activity is affected by the presence of secondary atom. PtSn/PANICNT showed the highest activity as reflected by the highest current density and highest sensitivity. The current density was about 8.27 mA/cm2 and 8.27 mA/cm2 at basic and neutral pH, respectively. The highest sensitivity for PtSn/PANICNT was achieved at potential 0.0 V and 0.1 V, which were about 39.64 μAcm-2mM-1 and 39.54 μAcm-2mM-1 respectively. On the other hand, PtPb/PANICNT shifted glucose electrooxidation to lower potential as the highest sensitivity (40.33 μAcm-2mM-1) was achieved at -0.1 V.
關鍵字(中) ★ 混合生物燃料電池
★ 非移動式漆酶
★ 白金雙金屬合金
★ 氧還原
★ 葡萄糖還原
關鍵字(英) ★ hybrid biofuel cell
★ immobilized laccase
★ Pt bimetallic alloy
★ oxygen electroreduction
★ glucose electrooxidation
論文目次 CHINESSE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
EXPLANATION OF SYMBOL x
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Problem Statement 2
1-3 Purpose of Study 3
CHAPTER 2 LITERATURE REVIEW 4
2-1 Enzyme Based Biofuel Cell 4
2-2 Laccases 6
2-3 Enzyme-based cathode for oxygen electroreduction 10
2-4 Electron Transfer in Biocathode 11
2-5 Immobilization Methods for biocathode 14
CHAPTER 3 EXPERIMENTAL SECTION 17
3-1 Materials 17
3-2 Procedure 17
3-2-1 Biocathode preparation 17
3-2-2 Anode Preparation 19
3-2-3 Structure and Electrochemical Characterization 20
CHAPTER 4 RESULT AND DISCUSSION 21
4-1 Cathode: Laccase-catalyzed oxygen electroreduction 21
4-1-1 Fourrier Transform Infrared Spectra of CNT-Laccase 21
4-1-2 CNT-Laccase microstructure 22
4-1-3 CNT-Laccase thermal decomposition temperature 24
4-1-4 Effect of immobilization on Laccase temperature and pH stabilization 25
4-1-5 Oxygen electroreduction activity of immobilized Laccase 26
4-2 Anode: Glucose electrooxidation on PtM (M=Sn, Pb) bimetallic catalyst supported on PANI CNT 28
4-2-1 Pt bimetallic catalyst supported on PANI CNT structure characterization 28
4-2-2 Catalytic activity of PtM catalyst to glucose in basic condition and neutral pH 30
4-2-3 PtSn/PANICNT and PtPb/PANICNT activity toward fructose electrooxidation 35
CHAPTER 5 CONCLUSION 36
CHAPTER 6 REFFERENCES 38
參考文獻 [1] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, "Hydrogen and fuel cells: Towards a sustainable energy future", Energy Policy, 36, pp. 4356-4362, 2008.
[2] K. Sundmacher, "Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants", Industrial & Engineering Chemistry Research, 49, pp. 10159-10182, 2010.
[3] S.G. Chalk, J.F. Miller, "Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems", Journal of Power Sources, 159, pp. 73-80, 2006.
[4] W. Gellett, J. Schumacher, M. Kesmez, D. Le, S. Minteer, D. , "High Current Density Air-Breathing Laccase Biocathode", 157, pp. B557-B562, 2010.
[5] C.H. Kjaergaard, J. Rossmeisl, J.K. Nørskov, "Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme", Inorganic Chemistry, 49, pp. 3567-3572, 2010.
[6] L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, "Implanted Biofuel Cell Operating in a Living Snail", Journal of the American Chemical Society, 134, pp. 5040-5043, 2012.
[7] S. Calabrese Barton, J. Gallaway, P. Atanassov, "Enzymatic Biofuel Cells for Implantable and Microscale Devices", Chemical Reviews, 104, pp. 4867-4886, 2004.
[8] J.L. Toca-Herrera, J.F. Osma, S.R. Couto, Potential of solid-state fermentation for laccase production, in: Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez-Vilas (Ed.), FORMATEX, Spain, 2007.
[9] B. Viswanath, M.S. Chandra, H. Pallavi, B.R. Reddy, "Screening and assessment of laccase producing fungi isolated from different environmental samples", African Journal of Biotechnology, 7, pp. 1129-1133, 2008.
[10] D.L. Johnson, J.L. Thompson, S.M. Brinkmann, K.A. Schuller, L.L. Martin, "Electrochemical Characterization of Purified Rhus vernicifera Laccase: Voltammetric Evidence for a Sequential Four-Electron Transfer †", Biochemistry, 42, pp. 10229-10237, 2003.
[11] K. Piontek, "Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-A Resolution Containing a Full Complement of Coppers", Journal of Biological Chemistry, 277, pp. 37663-37669, 2002.
[12] O.V. Morozova, G.P. Shumakovich, M.A. Gorbacheva, S.V. Shleev, A.I. Yaropolov, "“Blue” laccases", Biochemistry (Moscow), 72, pp. 1136-1150, 2007.
[13] P. Baldrian, "Fungal laccases: occurrence and properties", FEMS Microbiology Reviews, 30, pp. 215-242, 2006.
[14] S. Shleev, A. Jarosz-Wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov, T. Ruzgas, L. Gorton, "Direct electron transfer reactions of laccases from different origins on carbon electrodes", Bioelectrochemistry, 67, pp. 115-124, 2005.
[15] O.V. Morozova, G.P. Shumakovich, S.V. Shleev, Y.I. Yaropolov, "Laccase-mediator systems and their applications: A review", Applied Biochemistry and Microbiology, 43, pp. 523-535, 2007.
[16] K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, W. Schuhmann, P.J. Kulesza, "ABTS-Modified Multiwalled Carbon Nanotubes as an Effective Mediating System for Bioelectrocatalytic Reduction of Oxygen", Analytical Chemistry, 80, pp. 7643-7648, 2008.
[17] C. Vaz-Dominguez, S. Campuzano, O. Rüdiger, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernandez, A.L. De Lacey, "Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition", Biosensors and Bioelectronics, 24, pp. 531-537, 2008.
[18] I. Ivanov, T. Vidaković-Koch, K. Sundmacher, "Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling", Energies, 3, pp. 803-846, 2010.
[19] N. Karousis, N. Tagmatarchis, D. Tasis, "Current Progress on the Chemical Modification of Carbon Nanotubes", Chemical Reviews, 110, pp. 5366-5397, 2010.
[20] R.P. Ramasamy, H.R. Luckarift, D.M. Ivnitski, P.B. Atanassov, G.R. Johnson, "High electrocatalytic activity of tethered multicopper oxidase–carbon nanotube conjugates", Chemical Communications, 46, pp. 6045-6047, 2010.
[21] E. Nazaruk, M. Karaskiewicz, K. Żelechowska, J.F. Biernat, J. Rogalski, R. Bilewicz, "Powerful connection of laccase and carbon nanotubes", Electrochemistry Communications, 14, pp. 67-70, 2012.
[22] S.A. Neto, J.C. Forti, A.R. Andrade, "An Overview of Enzymatic Biofuel Cells", Electrocatalysis, 1, pp. 87-94, 2010.
[23] J. Kim, H. Jia, P. Wang, "Challenges in biocatalysis for enzyme-based biofuel cells", Biotechnology Advances, 24, pp. 296-308, 2006.
[24] A.T. Yahiro, S.M. Lee, D.O. Kimble, "Enzyme Utilizing Bio-Fuel Cell Studies", Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects, 88, pp. 375-383, 1964.
[25] E.V. Plotkin, I.J. Higgins, H.A.O. Hill, "Methanol dehydrogenase bioelectrochemical cell and alcohol detector", Biotechnology Letters, 3, pp. 187-192, 1981.
[26] G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, "A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials", Journal of Electroanalytical Chemistry, 443, pp. 155-161, 1998.
[27] T. Chen, S.C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.-H. Kim, A. Heller, "A Miniature Biofuel Cell", Journal of the American Chemical Society, 123, pp. 8630-8631, 2001.
[28] M.J. Moehlenbrock, S.D. Minteer, "Extended lifetime biofuel cells", Chemical Society Reviews, 37, pp. 1188–1196, 2008.
[29] X. Lu, Q. Zhang, L. Zhang, J. Li, "Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid", Electrochemistry Communications, 8, pp. 874-878, 2006.
[30] T. Kihara, X.-Y. Liu, C. Nakamura, K.-M. Park, S.-W. Han, D.-J. Qian, K. Kawasaki, N.A. Zorin, S. Yasuda, K. Hata, T. Wakayama, J. Miyake, "Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest", International Journal of Hydrogen Energy, 36, pp. 7523-7529, 2011.
[31] S. Alwarappan, R.K. Joshi, M.K. Ram, A. Kumar, "Electron transfer mechanism of cytochrome c at graphene electrode", Applied Physics Letters, 96, pp. 263702, 2010.
[32] S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A.I. Yaropolov, J.W. Whittaker, L. Gorton, "Direct electron transfer between copper-containing proteins and electrodes", Biosensors and Bioelectronics, 20, pp. 2517-2554, 2005.
[33] C. Gutiérrez-Sánchez, W. Jia, Y. Beyl, M. Pita, W. Schuhmann, A.L. De Lacey, L. Stoica, "Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods", Electrochimica Acta, 82, pp. 218-223, 2012.
[34] C.S. Thomas, M.J. Glassman, B.D. Olsen, "Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein–Polymer Diblock Copolymer", ACS Nano, 5, pp. 5697-5707, 2011.
[35] D.L. Nelson, M.M. Cox, A.L. Lehninger, Principles of biochemistry, 4th ed., Freeman, New York, NY, 2008.
[36] P.R. Babu, R. Pinnamaneni, S. Koona, "Occurrences, Physical and Biochemical Properties of Laccase", Universal Journal of Environmental Research and Technology, 2, pp. 1-13, 2012.
[37] M. Alcalde, Laccases: biological functions, molecular structure and industrial applications, in: Industrial enzymes : structure, function and applications, J. Polaina, A.P. MacCabe (Eds.), Springer Dordrecht, pp. 461-476, 2007.
[38] H. Yoshida, "Chemistry of lacquer (Urushi). Part I.", Journal of the Chemical Society, Transactions, 43, pp. 472-486, 1883.
[39] Z.-M. Fang, T.-L. Li, F. Chang, P. Zhou, W. Fang, Y.-Z. Hong, X.-C. Zhang, H. Peng, Y.-Z. Xiao, "A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability", Bioresource Technology, 111, pp. 36-41, 2012.
[40] K. Hildén, T.K. Hakala, T. Lundell, "Thermotolerant and thermostable laccases", Biotechnology Letters, 31, pp. 1117-1128, 2009.
[41] T. Suzuki, K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, Y. Inamori, "A Thermostable Laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence, and Expression", Bioscience, Biotechnology, and Biochemistry, 67, pp. 2167-2175, 2003.
[42] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, "Multicopper Oxidases and Oxygenases", Chemical Reviews, 96, pp. 2563-2606, 1996.
[43] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, G. Sannia, "Laccases: a never-ending story", Cellular and Molecular Life Sciences, 67, pp. 369-385, 2009.
[44] E.I. Solomon, A.J. Augustine, J. Yoon, "O2 Reduction to H2O by the multicopper oxidases", Dalton Transactions, pp. 3921–3932, 2008.
[45] A. Marjasvaara, J. Jänis, P. Vainiotalo, "Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry", Journal of Mass Spectrometry, 43, pp. 470-477, 2008.
[46] H. Leutbecher, G. Greiner, R. Amann, A. Stolz, U. Beifuss, J. Conrad, "Laccase-catalyzed phenol oxidation. Rapid assignment of ring-proton deficient polycyclic benzofuran regioisomers by experimental 1H-13C long-range coupling constants and DFT-predicted product formation", Organic & Biomolecular Chemistry, 9, pp. 2667-2673, 2011.
[47] O. Farver, S. Wherland, O. Koroleva, D.S. Loginov, I. Pecht, "Intramolecular electron transfer in laccases", FEBS Journal, 278, pp. 3463-3471, 2011.
[48] D. Ivnitski, P. Atanassov, "Electrochemical Studies of Intramolecular Electron Transfer in Laccase fromTrametes versicolor", Electroanalysis, 19, pp. 2307-2313, 2007.
[49] M. Ferraroni, N.M. Myasoedova, V. Schmatchenko, A.A. Leontievsky, L.A. Golovleva, A. Scozzafava, F. Briganti, "Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases", BMC Structural Biology, 7, pp. 60-73, 2007.
[50] J.A. Cracknell, K.A. Vincent, F.A. Armstrong, "Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis", Chemical Reviews, 108, pp. 2439-2461, 2008.
[51] F.J. Enguita, "Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus subtilis", Journal of Biological Chemistry, 279, pp. 23472-23476, 2004.
[52] M. Fabbrini, C. Galli, P. Gentili, "Comparing the catalytic efficiency of some mediators of laccase", Journal of Molecular Catalysis B: Enzymatic, 16, pp. 231-240, 2002.
[53] S. Rubenwolf, O. Strohmeier, A. Kloke, S. Kerzenmacher, R. Zengerle, F. von Stetten, "Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density–cathode potential behavior", Biosensors and Bioelectronics, 26, pp. 841-845, 2010.
[54] A. Habrioux, T. Napporn, K. Servat, S. Tingry, K.B. Kokoh, "Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell", Electrochimica Acta, 55, pp. 7701-7705, 2010.
[55] K. Sadowska, K. Stolarczyk, J.F. Biernat, K.P. Roberts, J. Rogalski, R. Bilewicz, "Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes", Bioelectrochemistry, 80, pp. 73-80, 2010.
[56] P. Scodeller, R. Carballo, R. Szamocki, L. Levin, F. Forchiassin, E.J. Calvo, "Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide", Journal of the American Chemical Society, 132, pp. 11132-11140, 2010.
[57] R. Kontani, S. Tsujimura, K. Kano, "Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes", Bioelectrochemistry, 76, pp. 10-13, 2009.
[58] G. Gupta, C. Lau, V. Rajendran, F. Colon, B. Branch, D. Ivnitski, P. Atanassov, "Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes", Electrochemistry Communications, 13, pp. 247-249, 2011.
[59] S. Shleev, G. Shumakovich, O. Morozova, A. Yaropolov, "Stable ‘Floating’ Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase", Fuel Cells, 10, pp. 726-733, 2010.
[60] K. Szot, W. Nogala, J. Niedziolka-Jönsson, M. Jönsson-Niedziolka, F. Marken, J. Rogalski, C.N. Kirchner, G. Wittstock, M. Opallo, "Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction", Electrochimica Acta, 54, pp. 4620-4625, 2009.
[61] A. Lesniewski, M. Paszewski, M. Opallo, "Gold–carbon three dimensional film electrode prepared from oppositely charged conductive nanoparticles by layer-by-layer approach", Electrochemistry Communications, 12, pp. 435-437, 2010.
[62] V. Flexer, N. Brun, O. Courjean, R. Backov, N. Mano, "Porous mediator-free enzyme carbonaceous electrodes obtained through Integrative Chemistry for biofuel cells", Energy & Environmental Science, 4, pp. 2097–2106, 2011.
[63] Y. Liu, M. Wang, F. Zhao, B. Liu, S. Dong, "A Low-Cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix", Chemistry - A European Journal, 11, pp. 4970-4974, 2005.
[64] E. Nazaruk, K. Sadowska, K. Madrak, J.F. Biernat, J. Rogalski, R. Bilewicz, "Composite Bioelectrodes Based on Lipidic Cubic Phase with Carbon Nanotube Network", Electroanalysis, 21, pp. 507-511, 2009.
[65] M. Smolander, H. Boer, M. Valkiainen, R. Roozeman, M. Bergelin, J.-E. Eriksson, X.-C. Zhang, A. Koivula, L. Viikari, "Development of a printable laccase-based biocathode for fuel cell applications", Enzyme and Microbial Technology, 43, pp. 93-102, 2008.
[66] J.-F. Wu, M.-Q. Xu, G.-C. Zhao, "Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing", Electrochemistry Communications, 12, pp. 175-177, 2010.
[67] X. Wang, P. Sjöberg-Eerola, K. Immonen, J. Bobacka, M. Bergelin, "Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices", Journal of Power Sources, 196, pp. 4957-4964, 2011.
[68] Y. Wang, Z. Iqbal, S.V. Malhotra, "Functionalization of carbon nanotubes with amines and enzymes", Chemical Physics Letters, 402, pp. 96–101, 2005.
[69] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, "Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes", Journal Physical Chemistry B, 107, pp. 3712-3718, 2003.
[70] H.-Y. Lee, W. Vogel, P.P.-J. Chu, "Nanostructure and Surface Composition of Pt and Ru Binary Catalysts on Polyaniline-Functionalized Carbon Nanotubes", Langmuir, 27, pp. 14654-14661, 2011.
[71] S.H. Chuang, "Conducting polymer-modified carbon nanotubes supported Pt-Sn as catalysts for ethanol oxidation", National Central University, Thesis, 2012.
[72] R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds, 7th ed., John Wiley & Sons, Hoboken, NJ, 2005.
[73] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46, pp. 833-840, 2008.
[74] I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, "Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking", BioTechniques, 37, pp. 790-802, 2004.
[75] J.H. Bowes, C.W. Cater, "The reaction of glutaraldehyde with proteins and other biological materials", Journal of the Royal Microscopical Society, 85, pp. 193-200, 1966.
[76] G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl, "Extreme thermal stability of carbon nanotubes", Physica Status Solidi B: Basic Research, 244, pp. 3960-3963, 2007.
[77] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, "Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry", Nano Letters, 2, pp. 615-619, 2002.
[78] A. Mahajan, A. Kingon, Á. Kukovecz, Z. Konya, P.M. Vilarinho, "Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres", Materials Letters, 90, pp. 165-168, 2013.
[79] F. Xu, "Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases", The Journal of biological chemistry, 272, pp. 924-928, 1997.
[80] I. Stoilova, "Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation", Advances in Bioscience and Biotechnology, 01, pp. 208-215, 2010.
[81] H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, "Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation", Electrochimica Acta, 52, pp. 6622-6629, 2007.
[82] K.E. Toghill, R.G. Compton, "Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation", International Journal of Electrochemical Science, 5, pp. 1246 - 1301, 2010.
[83] H.-F. Cui, J.-S. Ye, X. Liu, W.-D. Zhang, F.-S. Sheu, "Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation", Nanotechnology, 17, pp. 2334-2339, 2006.
[84] P. Liu, "Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn", Electrochimica Acta, 48, pp. 3731-3742, 2003.
[85] Y. Sun, H. Buck, T.E. Mallouk, "Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors", Analytical Chemistry, 73, pp. 1599-1604, 2001.
[86] Q. Jiang, L. Jiang, J. Qi, S. Wang, G. Sun, "Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media", Electrochimica Acta, 56, pp. 6431-6440, 2011.
[87] A.A. Athawale, S.V. Bhagwat, P.P. Katre, "Nanocomposite of Pd–polyaniline as a selective methanol sensor", Sensors and Actuators B: Chemical, 114, pp. 263-267, 2006.
[88] D. Basu, S. Basu, "A study on direct glucose and fructose alkaline fuel cell", Electrochimica Acta, 55, pp. 5775-5779, 2010.
指導教授 諸柏仁(Peter Po-Jhen Chu) 審核日期 2013-3-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明