參考文獻 |
[1] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, "Hydrogen and fuel cells: Towards a sustainable energy future", Energy Policy, 36, pp. 4356-4362, 2008.
[2] K. Sundmacher, "Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants", Industrial & Engineering Chemistry Research, 49, pp. 10159-10182, 2010.
[3] S.G. Chalk, J.F. Miller, "Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems", Journal of Power Sources, 159, pp. 73-80, 2006.
[4] W. Gellett, J. Schumacher, M. Kesmez, D. Le, S. Minteer, D. , "High Current Density Air-Breathing Laccase Biocathode", 157, pp. B557-B562, 2010.
[5] C.H. Kjaergaard, J. Rossmeisl, J.K. Nørskov, "Enzymatic versus Inorganic Oxygen Reduction Catalysts: Comparison of the Energy Levels in a Free-Energy Scheme", Inorganic Chemistry, 49, pp. 3567-3572, 2010.
[6] L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, "Implanted Biofuel Cell Operating in a Living Snail", Journal of the American Chemical Society, 134, pp. 5040-5043, 2012.
[7] S. Calabrese Barton, J. Gallaway, P. Atanassov, "Enzymatic Biofuel Cells for Implantable and Microscale Devices", Chemical Reviews, 104, pp. 4867-4886, 2004.
[8] J.L. Toca-Herrera, J.F. Osma, S.R. Couto, Potential of solid-state fermentation for laccase production, in: Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez-Vilas (Ed.), FORMATEX, Spain, 2007.
[9] B. Viswanath, M.S. Chandra, H. Pallavi, B.R. Reddy, "Screening and assessment of laccase producing fungi isolated from different environmental samples", African Journal of Biotechnology, 7, pp. 1129-1133, 2008.
[10] D.L. Johnson, J.L. Thompson, S.M. Brinkmann, K.A. Schuller, L.L. Martin, "Electrochemical Characterization of Purified Rhus vernicifera Laccase: Voltammetric Evidence for a Sequential Four-Electron Transfer †", Biochemistry, 42, pp. 10229-10237, 2003.
[11] K. Piontek, "Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-A Resolution Containing a Full Complement of Coppers", Journal of Biological Chemistry, 277, pp. 37663-37669, 2002.
[12] O.V. Morozova, G.P. Shumakovich, M.A. Gorbacheva, S.V. Shleev, A.I. Yaropolov, "“Blue” laccases", Biochemistry (Moscow), 72, pp. 1136-1150, 2007.
[13] P. Baldrian, "Fungal laccases: occurrence and properties", FEMS Microbiology Reviews, 30, pp. 215-242, 2006.
[14] S. Shleev, A. Jarosz-Wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov, T. Ruzgas, L. Gorton, "Direct electron transfer reactions of laccases from different origins on carbon electrodes", Bioelectrochemistry, 67, pp. 115-124, 2005.
[15] O.V. Morozova, G.P. Shumakovich, S.V. Shleev, Y.I. Yaropolov, "Laccase-mediator systems and their applications: A review", Applied Biochemistry and Microbiology, 43, pp. 523-535, 2007.
[16] K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, W. Schuhmann, P.J. Kulesza, "ABTS-Modified Multiwalled Carbon Nanotubes as an Effective Mediating System for Bioelectrocatalytic Reduction of Oxygen", Analytical Chemistry, 80, pp. 7643-7648, 2008.
[17] C. Vaz-Dominguez, S. Campuzano, O. Rüdiger, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernandez, A.L. De Lacey, "Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition", Biosensors and Bioelectronics, 24, pp. 531-537, 2008.
[18] I. Ivanov, T. Vidaković-Koch, K. Sundmacher, "Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling", Energies, 3, pp. 803-846, 2010.
[19] N. Karousis, N. Tagmatarchis, D. Tasis, "Current Progress on the Chemical Modification of Carbon Nanotubes", Chemical Reviews, 110, pp. 5366-5397, 2010.
[20] R.P. Ramasamy, H.R. Luckarift, D.M. Ivnitski, P.B. Atanassov, G.R. Johnson, "High electrocatalytic activity of tethered multicopper oxidase–carbon nanotube conjugates", Chemical Communications, 46, pp. 6045-6047, 2010.
[21] E. Nazaruk, M. Karaskiewicz, K. Żelechowska, J.F. Biernat, J. Rogalski, R. Bilewicz, "Powerful connection of laccase and carbon nanotubes", Electrochemistry Communications, 14, pp. 67-70, 2012.
[22] S.A. Neto, J.C. Forti, A.R. Andrade, "An Overview of Enzymatic Biofuel Cells", Electrocatalysis, 1, pp. 87-94, 2010.
[23] J. Kim, H. Jia, P. Wang, "Challenges in biocatalysis for enzyme-based biofuel cells", Biotechnology Advances, 24, pp. 296-308, 2006.
[24] A.T. Yahiro, S.M. Lee, D.O. Kimble, "Enzyme Utilizing Bio-Fuel Cell Studies", Biochimica et Biophysica Acta (BBA) - Specialized Section on Biophysical Subjects, 88, pp. 375-383, 1964.
[25] E.V. Plotkin, I.J. Higgins, H.A.O. Hill, "Methanol dehydrogenase bioelectrochemical cell and alcohol detector", Biotechnology Letters, 3, pp. 187-192, 1981.
[26] G.T.R. Palmore, H. Bertschy, S.H. Bergens, G.M. Whitesides, "A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials", Journal of Electroanalytical Chemistry, 443, pp. 155-161, 1998.
[27] T. Chen, S.C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H.-H. Kim, A. Heller, "A Miniature Biofuel Cell", Journal of the American Chemical Society, 123, pp. 8630-8631, 2001.
[28] M.J. Moehlenbrock, S.D. Minteer, "Extended lifetime biofuel cells", Chemical Society Reviews, 37, pp. 1188–1196, 2008.
[29] X. Lu, Q. Zhang, L. Zhang, J. Li, "Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid", Electrochemistry Communications, 8, pp. 874-878, 2006.
[30] T. Kihara, X.-Y. Liu, C. Nakamura, K.-M. Park, S.-W. Han, D.-J. Qian, K. Kawasaki, N.A. Zorin, S. Yasuda, K. Hata, T. Wakayama, J. Miyake, "Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest", International Journal of Hydrogen Energy, 36, pp. 7523-7529, 2011.
[31] S. Alwarappan, R.K. Joshi, M.K. Ram, A. Kumar, "Electron transfer mechanism of cytochrome c at graphene electrode", Applied Physics Letters, 96, pp. 263702, 2010.
[32] S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A.I. Yaropolov, J.W. Whittaker, L. Gorton, "Direct electron transfer between copper-containing proteins and electrodes", Biosensors and Bioelectronics, 20, pp. 2517-2554, 2005.
[33] C. Gutiérrez-Sánchez, W. Jia, Y. Beyl, M. Pita, W. Schuhmann, A.L. De Lacey, L. Stoica, "Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes. Comparison of three enzyme immobilization methods", Electrochimica Acta, 82, pp. 218-223, 2012.
[34] C.S. Thomas, M.J. Glassman, B.D. Olsen, "Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein–Polymer Diblock Copolymer", ACS Nano, 5, pp. 5697-5707, 2011.
[35] D.L. Nelson, M.M. Cox, A.L. Lehninger, Principles of biochemistry, 4th ed., Freeman, New York, NY, 2008.
[36] P.R. Babu, R. Pinnamaneni, S. Koona, "Occurrences, Physical and Biochemical Properties of Laccase", Universal Journal of Environmental Research and Technology, 2, pp. 1-13, 2012.
[37] M. Alcalde, Laccases: biological functions, molecular structure and industrial applications, in: Industrial enzymes : structure, function and applications, J. Polaina, A.P. MacCabe (Eds.), Springer Dordrecht, pp. 461-476, 2007.
[38] H. Yoshida, "Chemistry of lacquer (Urushi). Part I.", Journal of the Chemical Society, Transactions, 43, pp. 472-486, 1883.
[39] Z.-M. Fang, T.-L. Li, F. Chang, P. Zhou, W. Fang, Y.-Z. Hong, X.-C. Zhang, H. Peng, Y.-Z. Xiao, "A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability", Bioresource Technology, 111, pp. 36-41, 2012.
[40] K. Hildén, T.K. Hakala, T. Lundell, "Thermotolerant and thermostable laccases", Biotechnology Letters, 31, pp. 1117-1128, 2009.
[41] T. Suzuki, K. Endo, M. Ito, H. Tsujibo, K. Miyamoto, Y. Inamori, "A Thermostable Laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence, and Expression", Bioscience, Biotechnology, and Biochemistry, 67, pp. 2167-2175, 2003.
[42] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, "Multicopper Oxidases and Oxygenases", Chemical Reviews, 96, pp. 2563-2606, 1996.
[43] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, G. Sannia, "Laccases: a never-ending story", Cellular and Molecular Life Sciences, 67, pp. 369-385, 2009.
[44] E.I. Solomon, A.J. Augustine, J. Yoon, "O2 Reduction to H2O by the multicopper oxidases", Dalton Transactions, pp. 3921–3932, 2008.
[45] A. Marjasvaara, J. Jänis, P. Vainiotalo, "Oxidation of a laccase mediator ABTS as studied by ESI-FTICR mass spectrometry", Journal of Mass Spectrometry, 43, pp. 470-477, 2008.
[46] H. Leutbecher, G. Greiner, R. Amann, A. Stolz, U. Beifuss, J. Conrad, "Laccase-catalyzed phenol oxidation. Rapid assignment of ring-proton deficient polycyclic benzofuran regioisomers by experimental 1H-13C long-range coupling constants and DFT-predicted product formation", Organic & Biomolecular Chemistry, 9, pp. 2667-2673, 2011.
[47] O. Farver, S. Wherland, O. Koroleva, D.S. Loginov, I. Pecht, "Intramolecular electron transfer in laccases", FEBS Journal, 278, pp. 3463-3471, 2011.
[48] D. Ivnitski, P. Atanassov, "Electrochemical Studies of Intramolecular Electron Transfer in Laccase fromTrametes versicolor", Electroanalysis, 19, pp. 2307-2313, 2007.
[49] M. Ferraroni, N.M. Myasoedova, V. Schmatchenko, A.A. Leontievsky, L.A. Golovleva, A. Scozzafava, F. Briganti, "Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases", BMC Structural Biology, 7, pp. 60-73, 2007.
[50] J.A. Cracknell, K.A. Vincent, F.A. Armstrong, "Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis", Chemical Reviews, 108, pp. 2439-2461, 2008.
[51] F.J. Enguita, "Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus subtilis", Journal of Biological Chemistry, 279, pp. 23472-23476, 2004.
[52] M. Fabbrini, C. Galli, P. Gentili, "Comparing the catalytic efficiency of some mediators of laccase", Journal of Molecular Catalysis B: Enzymatic, 16, pp. 231-240, 2002.
[53] S. Rubenwolf, O. Strohmeier, A. Kloke, S. Kerzenmacher, R. Zengerle, F. von Stetten, "Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density–cathode potential behavior", Biosensors and Bioelectronics, 26, pp. 841-845, 2010.
[54] A. Habrioux, T. Napporn, K. Servat, S. Tingry, K.B. Kokoh, "Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell", Electrochimica Acta, 55, pp. 7701-7705, 2010.
[55] K. Sadowska, K. Stolarczyk, J.F. Biernat, K.P. Roberts, J. Rogalski, R. Bilewicz, "Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes", Bioelectrochemistry, 80, pp. 73-80, 2010.
[56] P. Scodeller, R. Carballo, R. Szamocki, L. Levin, F. Forchiassin, E.J. Calvo, "Layer-by-Layer Self-Assembled Osmium Polymer-Mediated Laccase Oxygen Cathodes for Biofuel Cells: The Role of Hydrogen Peroxide", Journal of the American Chemical Society, 132, pp. 11132-11140, 2010.
[57] R. Kontani, S. Tsujimura, K. Kano, "Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes", Bioelectrochemistry, 76, pp. 10-13, 2009.
[58] G. Gupta, C. Lau, V. Rajendran, F. Colon, B. Branch, D. Ivnitski, P. Atanassov, "Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes", Electrochemistry Communications, 13, pp. 247-249, 2011.
[59] S. Shleev, G. Shumakovich, O. Morozova, A. Yaropolov, "Stable ‘Floating’ Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase", Fuel Cells, 10, pp. 726-733, 2010.
[60] K. Szot, W. Nogala, J. Niedziolka-Jönsson, M. Jönsson-Niedziolka, F. Marken, J. Rogalski, C.N. Kirchner, G. Wittstock, M. Opallo, "Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction", Electrochimica Acta, 54, pp. 4620-4625, 2009.
[61] A. Lesniewski, M. Paszewski, M. Opallo, "Gold–carbon three dimensional film electrode prepared from oppositely charged conductive nanoparticles by layer-by-layer approach", Electrochemistry Communications, 12, pp. 435-437, 2010.
[62] V. Flexer, N. Brun, O. Courjean, R. Backov, N. Mano, "Porous mediator-free enzyme carbonaceous electrodes obtained through Integrative Chemistry for biofuel cells", Energy & Environmental Science, 4, pp. 2097–2106, 2011.
[63] Y. Liu, M. Wang, F. Zhao, B. Liu, S. Dong, "A Low-Cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix", Chemistry - A European Journal, 11, pp. 4970-4974, 2005.
[64] E. Nazaruk, K. Sadowska, K. Madrak, J.F. Biernat, J. Rogalski, R. Bilewicz, "Composite Bioelectrodes Based on Lipidic Cubic Phase with Carbon Nanotube Network", Electroanalysis, 21, pp. 507-511, 2009.
[65] M. Smolander, H. Boer, M. Valkiainen, R. Roozeman, M. Bergelin, J.-E. Eriksson, X.-C. Zhang, A. Koivula, L. Viikari, "Development of a printable laccase-based biocathode for fuel cell applications", Enzyme and Microbial Technology, 43, pp. 93-102, 2008.
[66] J.-F. Wu, M.-Q. Xu, G.-C. Zhao, "Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing", Electrochemistry Communications, 12, pp. 175-177, 2010.
[67] X. Wang, P. Sjöberg-Eerola, K. Immonen, J. Bobacka, M. Bergelin, "Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices", Journal of Power Sources, 196, pp. 4957-4964, 2011.
[68] Y. Wang, Z. Iqbal, S.V. Malhotra, "Functionalization of carbon nanotubes with amines and enzymes", Chemical Physics Letters, 402, pp. 96–101, 2005.
[69] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, "Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes", Journal Physical Chemistry B, 107, pp. 3712-3718, 2003.
[70] H.-Y. Lee, W. Vogel, P.P.-J. Chu, "Nanostructure and Surface Composition of Pt and Ru Binary Catalysts on Polyaniline-Functionalized Carbon Nanotubes", Langmuir, 27, pp. 14654-14661, 2011.
[71] S.H. Chuang, "Conducting polymer-modified carbon nanotubes supported Pt-Sn as catalysts for ethanol oxidation", National Central University, Thesis, 2012.
[72] R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds, 7th ed., John Wiley & Sons, Hoboken, NJ, 2005.
[73] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46, pp. 833-840, 2008.
[74] I. Migneault, C. Dartiguenave, M.J. Bertrand, K.C. Waldron, "Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking", BioTechniques, 37, pp. 790-802, 2004.
[75] J.H. Bowes, C.W. Cater, "The reaction of glutaraldehyde with proteins and other biological materials", Journal of the Royal Microscopical Society, 85, pp. 193-200, 1966.
[76] G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl, "Extreme thermal stability of carbon nanotubes", Physica Status Solidi B: Basic Research, 244, pp. 3960-3963, 2007.
[77] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, "Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry", Nano Letters, 2, pp. 615-619, 2002.
[78] A. Mahajan, A. Kingon, Á. Kukovecz, Z. Konya, P.M. Vilarinho, "Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres", Materials Letters, 90, pp. 165-168, 2013.
[79] F. Xu, "Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases", The Journal of biological chemistry, 272, pp. 924-928, 1997.
[80] I. Stoilova, "Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation", Advances in Bioscience and Biotechnology, 01, pp. 208-215, 2010.
[81] H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, "Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation", Electrochimica Acta, 52, pp. 6622-6629, 2007.
[82] K.E. Toghill, R.G. Compton, "Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation", International Journal of Electrochemical Science, 5, pp. 1246 - 1301, 2010.
[83] H.-F. Cui, J.-S. Ye, X. Liu, W.-D. Zhang, F.-S. Sheu, "Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation", Nanotechnology, 17, pp. 2334-2339, 2006.
[84] P. Liu, "Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn", Electrochimica Acta, 48, pp. 3731-3742, 2003.
[85] Y. Sun, H. Buck, T.E. Mallouk, "Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors", Analytical Chemistry, 73, pp. 1599-1604, 2001.
[86] Q. Jiang, L. Jiang, J. Qi, S. Wang, G. Sun, "Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media", Electrochimica Acta, 56, pp. 6431-6440, 2011.
[87] A.A. Athawale, S.V. Bhagwat, P.P. Katre, "Nanocomposite of Pd–polyaniline as a selective methanol sensor", Sensors and Actuators B: Chemical, 114, pp. 263-267, 2006.
[88] D. Basu, S. Basu, "A study on direct glucose and fructose alkaline fuel cell", Electrochimica Acta, 55, pp. 5775-5779, 2010. |