博碩士論文 984401018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.138.135.4
姓名 温志皓(Chih-Hao Wen)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 推薦系統應用於遏止走私攻擊以捍衛國家安全
(Applying Recommender Systems to Defend National Borders from Smuggling Attacks)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在台灣四面環海的地理條件下,海上交通及運輸甚為發達。同樣地,經由海上走私的項目與金額,也非常龐大。因為走私而進入國內的毒品、槍械、非法移民或情治人員將會嚴重影響國內治安及國家安全。海巡署所屬各單位在港口對進出船隻執法檢查是遏止走私事件的重要攔截防線。目前現行作業方式是在船隻出港或進港的同時,依岸巡人員之經驗來選擇抽檢的船隻。這種方式往往會依人員更迭與累積的經驗多寡而影響查緝走私效率的良窳。此外,走私項目的差異(如漁獲與槍械),對於治安將會造成更懸殊的影響。
本研究為能提高對走私船隻的鑑別率,將針對走私項目(如漁獲、槍械、毒品…等等)與蒐集變數(如母港、船主年齡、進出港口…等等)之間其相依或是獨立的關係,採用分類樹與貝氏網路演算法,分別建立變數相依分類樹、變數獨立分類樹、以及變數相依貝氏網路、變數獨立貝氏網路等四種模型。尤其,本研究考慮走私項目將會對社會治安產生的危害價值納入分析內容,提供建議檢查的船隻選擇方式。因此,本研究的結果可在相同的檢查時間下,對走私船隻有更準確的鑑別率,同時,選取走私價值最大的船隻以降低對社會治安與國家安全可能造成的損害。
摘要(英) Being an island state, Taiwan’s maritime traffic and sea transportation is well-developed; however, smuggling by sea converts into a critical issue. Coast Guard Administration (CGA) becomes a vital intercept line to curb smuggling events for Taiwan’s social and national security. Yet, it is dubious and untrustworthy for current practices since inspectors of CGA check vessels selectively by personnel experience. In addition, the repercussion caused by different smuggling items (such as fishery and guns) is varied.
In order to improve the identification rate of smuggling vessels for smuggling items (such as fishery, guns, drugs etc.) and collecting variables (such as the home port, the age of boat owners, the vessels’ entry and departure etc.) between relationships of dependence or independence, this research applies classification trees and Bayesian network algorithms respectively creating four models: a dependent classification tree model, an independent classification tree model, a dependent Bayesian network model, and an independent Bayesian network model. In particular, this research offers an inspective method for vessel’s selection owing to the impact of social security caused by smuggled items. Therefore, this research on one hand improves the identification accuracy of smuggling vessels, on the other, reduces the possible damage in social and national security by selecting the vessels with the largest smuggling value.
關鍵字(中) ★ 走私
★ 決策樹
★ 貝氏網路
★ 馬可夫覆蓋
★ 國境安全
★ 國家安全
關鍵字(英) ★ Smuggling
★ Decision trees
★ Bayesian networks
★ Markov blanket
★ National border security
★ Homeland security
論文目次 中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT IV
INDEX V
LIST OF FIGURES VII
LIST OF TABLES VIII
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. RELATED WORK 6
2.1. Homeland security 6
2.2. Machine learning 10
2.2.1. Decision trees 10
2.2.2. Bayesian networks 12
2.3. Recommender system 13
CHAPTER 3. METHODOLOGY 16
3.1. The Decision Model 16
3.2. Estimation of p(s,i) with Classification trees 20
3.3. Estimation of p(s,i) with the Markov Blanket Method 23
3.4. Estimation of smuggling probability 28
3.5. Research process 31
CHAPTER 4. EMPIRICAL EVALUATION 33
4.1. Data collection 33
4.2. Data preparation 35
4.3. Model performance evaluation 39
4.4. Experiment results 40
4.5. Sensitivity analysis 43
4.6. Analysis of create models time 45
CHAPTER 5. DISCUSSIONS 47
CHAPTER 6. CONCLUSIONS 50
REFERENCES 52
參考文獻 Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749. doi: 10.1109/tkde.2005.99
Ali, W., Shamsuddin, S. M., & Ismail, A. S. (2012). Intelligent Web proxy caching approaches based on machine learning techniques. Decision Support Systems, 53(3), 565-579. doi: 10.1016/j.dss.2012.04.011
Alspector, J., Kolcz, A., & Karunanithi, N. (1998). Comparing feature-based and clique-based user models for movie selection. Paper presented at the Proceedings of the third ACM conference on Digital libraries, Pittsburgh, Pennsylvania, United States.
American Association of Port Authorities. (2012). World Port Rankings (2010). Port Industry Statistics. Retrieved 01, May. 2012, from http://www.aapa-ports.org/Industry/content.cfm?ItemNumber=900
Bai, X. (2011). Predicting consumer sentiments from online text. Decision Support Systems, 50(4), 732-742. doi: 10.1016/j.dss.2010.08.024
Balabanovi, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Commun. ACM, 40(3), 66-72. doi: 10.1145/245108.245124
Beja, E. L. (2008). Estimating Trade Mis-invoicing from China: 2000–2005. China & World Economy, 16(2), 82-92. doi: 10.1111/j.1749-124X.2008.00108.x
Berry, M. J. A., & Linoff., G. S. (2004). Data mining techniques : for marketing, sales, and customer relationship management (2ed ed.). NJ, USA: John Wiley & Sons, Inc.
Bhagwati, J., & Hansen, B. (1973). A Theoretical Analysis of Smuggling. The Quarterly Journal of Economics, 87(2), 172-187. doi: 10.2307/1882182
Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. doi: DOI: 10.1016/j.dss.2010.08.008
Buehn, A., & Eichler, S. (2009). Smuggling illegal versus legal goods across the U.S.-Mexico border: A structural equations model approach. Southern Economic Journal, 76(2), 328-350.
Buehn, A., & Farzanegan, M. R. (2012). Smuggling around the world: Evidence from a structural equation model. Applied Economics, 44(23), 3047-3064. doi: 10.1080/00036846.2011.570715
Bui, A. T., & Jun, C.-H. (2012). Learning Bayesian network structure using Markov blanket decomposition. Pattern Recognition Letters, 33(16), 2134-2140. doi: http://dx.doi.org/10.1016/j.patrec.2012.06.013
Bunin, B., Sutin, A., Kamberov, G., Roh, H. S., Luczynski, B., & Burlick, M. (2008). Fusion of acoustic measurements with video surveillance for estuarine threat detection. Paper presented at the Proceedings of SPIE - The International Society for Optical Engineering, Orlando.
Cate, F. H. (June 2008). Government Data Mining: The Need for a Legal Framework. Harvard Civil Rights-Civil Liberties Law Review, 43(2), 435-489.
Chawdhry, P. K. (2009, 13-16 Dec. 2009). Risk modeling and simulation of airport passenger departures process. Paper presented at the Simulation Conference (WSC), Proceedings of the 2009 Winter.
Chen, H., Atabakhsh, H., Wang, A. G., Kaza, S., Tseng, L. C., Wang, Y., . . . Violette, C. (2006). COPLINK center: Social network analysis and identity deception detection for law enforcement and homeland security intelligence and security informatics: A crime data mining approach to developing border safe research, San Diego, CA.
Chen, H., Chung, W., Xu, J. J., Wang, G., Qin, Y., & Chau, M. (2004). Crime data mining: a general framework and some examples. Computer, 37(4), 50-56. doi: 10.1109/mc.2004.1297301
Chen, H., Wang, F. Y., & Zeng, D. (2004). Intelligence and security informatics for homeland security: Information, communication, and transportation. IEEE Transactions on Intelligent Transportation Systems, 5(4), 329-341.
Chou, J.-S. (2012). Comparison of multilabel classification models to forecast project dispute resolutions. Expert Systems with Applications, 39(11), 10202-10211. doi: 10.1016/j.eswa.2012.02.103
Dombroski, M. J., & Carley, K. M. (2002). NETEST: Estimating a Terrorist Network’s Structure—Graduate Student Best Paper Award, CASOS 2002 Conference. Computational & Mathematical Organization Theory, 8(3), 235-241. doi: 10.1023/a:1020723730930
Edge, K. S., Dalton, G. C., Raines, R. A., & Mills, R. F. (2006, 23-25 Oct. 2006). Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security. Paper presented at the Military Communications Conference, 2006. MILCOM 2006. IEEE, Washington DC, USA.
Farzanegan, M. R. (2009). Illegal trade in the Iranian economy: Evidence from a structural model. European Journal of Political Economy, 25(4), 489-507. doi: DOI: 10.1016/j.ejpoleco.2009.02.008
Frey, L., Fisher, D., Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003, 19-22 Nov. 2003). Identifying Markov blankets with decision tree induction. Paper presented at the Data Mining, 2003. ICDM 2003. Third IEEE International Conference on Melbourne, Florida, USA.
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine Learning, 29(2), 131-163. doi: 10.1023/a:1007465528199
Fu, S., & Desmarais, M. (2010). Feature selection by efficient learning of Markov blanket, London.
Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680-691. doi: 10.1016/j.dss.2010.08.019
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res., 3, 1157-1182.
Hájek, P. (2011). Municipal credit rating modelling by neural networks. Decision Support Systems, 51(1), 108-118. doi: DOI: 10.1016/j.dss.2010.11.033
Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, United States.
Holton, C. (2009). Identifying disgruntled employee systems fraud risk through text mining: A simple solution for a multi-billion dollar problem. Decision Support Systems, 46(4), 853-864. doi: 10.1016/j.dss.2008.11.013
Hruschka Jr, E. R., & Ebecken, N. F. F. (2007). Towards efficient variables ordering for Bayesian networks classifier. Data & Knowledge Engineering, 63(2), 258-269. doi: 10.1016/j.datak.2007.02.003
Hsieh, N.-C., & Hung, L.-P. (2010). A data driven ensemble classifier for credit scoring analysis. Expert Systems with Applications, 37(1), 534-545. doi: 10.1016/j.eswa.2009.05.059
Huang, C.-J., Wang, Y.-W., Huang, T.-H., Lin, C.-F., Li, C.-Y., Chen, H.-M., . . . Liao, J.-J. (2011). Applications of machine learning techniques to a sensor-network-based prosthesis training system. Applied Soft Computing, 11(3), 3229-3237. doi: 10.1016/j.asoc.2010.12.025
IBM. (2010). IBM SPSS Modeler 14.1 Algorithms Guide. Chicago: Integral Solutions Limited.
Jenner, M. S. (2011). International Drug Trafficking: A Global Problem with a Domestic Solution. [Article]. Indiana Journal of Global Legal Studies, 18(2), 901-927. doi: 10.2979/indjglolegstu.18.2.901
Jiang, Y., Shang, J., & Liu, Y. (2010). Maximizing customer satisfaction through an online recommendation system: A novel associative classification model. Decision Support Systems, 48(3), 470-479. doi: 10.1016/j.dss.2009.06.006
Kangning, W., Jinghua, H., & Shaohong, F. (2007, 9-11 June 2007). A Survey of E-Commerce Recommender Systems. Paper presented at the Service Systems and Service Management, 2007 International Conference on Chengdu, China.
Kaza, S., Wang, Y., & Chen, H. (2006). Suspect Vehicle Identification for Border Safety with Modified Mutual Information. Intelligence and Security Informatics. In S. Mehrotra, D. Zeng, H. Chen, B. Thuraisingham & F.-Y. Wang (Eds.), (Vol. 3975, pp. 308-318): Springer Berlin / Heidelberg.
Kaza, S., Wang, Y., & Chen, H. (2007). Enhancing border security: Mutual information analysis to identify suspect vehicles. Decision Support Systems, 43(1), 199-210. doi: 10.1016/j.dss.2006.09.007
Kazienko, P. (2007). Filtering of web recommendation lists using positive and negative usage patterns. Paper presented at the Proceedings of the 11th international conference, KES 2007 and XVII Italian workshop on neural networks conference on Knowledge-based intelligent information and engineering systems: Part III, Vietri sul Mare, Italy.
Kim, H.-N., Ha, I., Lee, K.-S., Jo, G.-S., & El-Saddik, A. (2011). Collaborative user modeling for enhanced content filtering in recommender systems. Decision Support Systems, 51(4), 772-781. doi: 10.1016/j.dss.2011.01.012
Kim, W. (2002). On database technology for US homeland security. Journal of Object Technology, 1(5), 43-49.
Kui, Y., Xindong, W., Wei, D., Hao, W., & Hongliang, Y. (2011, 11-14 Dec. 2011). Causal Associative Classification. Paper presented at the Data Mining (ICDM), 2011 IEEE 11th International Conference on Vancouver, BC, Canada.
Lee, M. S., Deng, M. C., Lin, Y. J., Chang, C. Y., Shieh, H. K., Shiau, J. Z., & Huang, C. C. (2007). Characterization of an H5N1 avian influenza virus from Taiwan. Veterinary Microbiology, 124(3-4), 193-201. doi: DOI: 10.1016/j.vetmic.2007.04.021
Lee, S. (2010). Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls. Decision Support Systems, 49(4), 486-497. doi: DOI: 10.1016/j.dss.2010.06.002
Lee, Y.-H., Hu, P. J.-H., Cheng, T.-H., & Hsieh, Y.-F. (2012). A cost-sensitive technique for positive-example learning supporting content-based product recommendations in B-to-C e-commerce. Decision Support Systems, 53(1), 245-256. doi: 10.1016/j.dss.2012.01.018
Liang, T.-P., Yang, Y.-F., Chen, D.-N., & Ku, Y.-C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412. doi: 10.1016/j.dss.2007.05.004
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE, 7(1), 76-80. doi: 10.1109/mic.2003.1167344
Luo, H., Wu, K., Guo, Z., Gu, L., Yang, Z., & Ni, L. M. (2011, 20-24 June 2011). SID: Ship Intrusion Detection with Wireless Sensor Networks. Paper presented at the Distributed Computing Systems (ICDCS), 2011 31st International Conference on Minneapolis, Minnesota, USA.
Madden, M. G. (2002). Evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm (N. U. o. I. Department of Information Technology, Trans.) (pp. 9). Galway Department of Information Technology, National University of Ireland.
Martin, L., & Panagariya, A. (1984). Smuggling, trade, and price disparity: A crime-theoretic approach. Journal of International Economics, 17(3-4), 201-217. doi: Doi: 10.1016/0022-1996(84)90020-5
Martonosi, S. E., Ortiz, D. S., & Willis, H. H. (2005). Evaluating the viability of 100 per cent container inspection at America’s ports. RAND Corporation.
Ministry of Finance. (2010). Yearbook of financial statistics of the Republic of China. Taipei: Ministry of Finance R.O.C. .
Murphy, P., & Aha, D. W. (1995). UCI repository of machine learning databases -- a machine-readable repository.
Narayanaswami, R., Gandhe, A., Tyurina, A., & Mehra, R. K. (2010, 8-10 Nov. 2010). Sensor fusion and feature-based human/animal classification for Unattended Ground Sensors. Paper presented at the Technologies for Homeland Security (HST), 2010 IEEE International Conference on Waltham, MA, USA.
Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473. doi: 10.1016/j.dss.2011.10.007
Pazzani, M., & Billsus, D. (1997). Learning and Revising User Profiles: The Identification ofInteresting Web Sites. Mach. Learn., 27(3), 313-331. doi: 10.1023/a:1007369909943
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In B. Peter, K. Alfred & N. Wolfgang (Eds.), The adaptive web (pp. 325-341): Springer-Verlag.
Phelan, O., McCarthy, K., & Smyth, B. (2009). Using twitter to recommend real-time topical news. Paper presented at the Proceedings of the third ACM conference on Recommender systems, New York, New York, USA.
Polat, H., & Du, W. (2008). Privacy-preserving top-N recommendation on distributed data. Journal of the American Society for Information Science and Technology, 59(7), 1093-1108. doi: 10.1002/asi.20831
Quinlan, J. R. (2007, February 2012). Data Mining Tools See5 and C5.0. Retrieved 4, May, 2012, from http://www.rulequest.com/see5-info.html
Ramirez-Marquez, J. E. (2008). Port-of-entry safety via the reliability optimization of container inspection strategy through an evolutionary approach. Reliability Engineering & System Safety, 93(11), 1698-1709. doi: 10.1016/j.ress.2008.01.003
Reiter, M., & Rohatgi, P. (2004). Homeland security. IEEE Internet Computing, 8(6), 16-17. doi: 10.1109/mic.2004.62
Schneider, S. (2000). Organized contraband smuggling and its enforcement in CANADA: an assessment of the anti-smuggling initiative. [Article]. Trends in Organized Crime, 6(2), 3.
Semeraro, G., Basile, P., Gemmis, M. d., & Lops, P. (2007). Content-based recommendation services for personalized digital libraries. Paper presented at the Proceedings of the 1st international conference on Digital libraries: research and development, Pisa, Italy.
Semeraro, G., Lops, P., Basile, P., & Gemmis, M. d. (2009). Knowledge infusion into content-based recommender systems. Paper presented at the Proceedings of the third ACM conference on Recommender systems, New York, New York, USA.
Shmueli, G., Patel, N. R., & Bruce, P. C. (2010). Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel. (2nd ed.). New Jersey: John Wiley and Sons, Inc.
Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining (1st ed.): Addison Wesley.
Tseng, T.-Y., Shiue, Y.-R., Ning, K.-C., Lin, S.-W., & Cheng, W.-M. (2009). Using new attribute construction to incorporate the expertise of human experts into a smuggling vessels classification system. Expert Systems with Applications, 36(4), 7773-7777. doi: DOI: 10.1016/j.eswa.2008.11.027
United States General Accounting Office. (February 2004). Aviation security: computer-assisted passenger prescreening system faces significant implementation challenges. (GAO-04-385). Washington, D.C.: United States General Accounting Office,.
van de Camp, M., & van den Bosch, A. (2012). The socialist network. Decision Support Systems, 53(4), 761-769. doi: 10.1016/j.dss.2012.05.031
Walden, J., & Kaplan, E. H. (2004). Estimating time and size of bioterror attack. Emerging Infectious Diseases, 10(7), 1202–1205. doi: 10.3201/eid1007.030632
Wang, Z., & Chan, L. (2012). Learning bayesian networks from Markov random fields: An efficient algorithm for linear models. ACM Trans. Knowl. Discov. Data, 6(3), 1-31. doi: 10.1145/2362383.2362384
Wein, L. M., Wilkins, A. H., Baveja, M., & Flynn, S. E. (2006). Preventing the Importation of Illicit Nuclear Materials in Shipping Containers. Risk Analysis, 26(5), 1377-1393. doi: 10.1111/j.1539-6924.2006.00817.x
Whitrow, C., Hand, D., Juszczak, P., Weston, D., & Adams, N. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30-55. doi: 10.1007/s10618-008-0116-z
Yifeng, Z., Jian, L., & Shuyuan, L. (2009, 17-19 Aug. 2009). Classification using Markov blanket for feature selection. Paper presented at the Granular Computing, 2009, GRC ’09. IEEE International Conference on Nanchang, China.
Zhu, F. (2011, 8-10 Aug. 2011). Mining ship spatial trajectory patterns from AIS database for maritime surveillance. Paper presented at the Emergency Management and Management Sciences (ICEMMS), 2011 2nd IEEE International Conference on Beijing, China.
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2013-3-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明