參考文獻 |
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749. doi: 10.1109/tkde.2005.99
Ali, W., Shamsuddin, S. M., & Ismail, A. S. (2012). Intelligent Web proxy caching approaches based on machine learning techniques. Decision Support Systems, 53(3), 565-579. doi: 10.1016/j.dss.2012.04.011
Alspector, J., Kolcz, A., & Karunanithi, N. (1998). Comparing feature-based and clique-based user models for movie selection. Paper presented at the Proceedings of the third ACM conference on Digital libraries, Pittsburgh, Pennsylvania, United States.
American Association of Port Authorities. (2012). World Port Rankings (2010). Port Industry Statistics. Retrieved 01, May. 2012, from http://www.aapa-ports.org/Industry/content.cfm?ItemNumber=900
Bai, X. (2011). Predicting consumer sentiments from online text. Decision Support Systems, 50(4), 732-742. doi: 10.1016/j.dss.2010.08.024
Balabanovi, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Commun. ACM, 40(3), 66-72. doi: 10.1145/245108.245124
Beja, E. L. (2008). Estimating Trade Mis-invoicing from China: 2000–2005. China & World Economy, 16(2), 82-92. doi: 10.1111/j.1749-124X.2008.00108.x
Berry, M. J. A., & Linoff., G. S. (2004). Data mining techniques : for marketing, sales, and customer relationship management (2ed ed.). NJ, USA: John Wiley & Sons, Inc.
Bhagwati, J., & Hansen, B. (1973). A Theoretical Analysis of Smuggling. The Quarterly Journal of Economics, 87(2), 172-187. doi: 10.2307/1882182
Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. doi: DOI: 10.1016/j.dss.2010.08.008
Buehn, A., & Eichler, S. (2009). Smuggling illegal versus legal goods across the U.S.-Mexico border: A structural equations model approach. Southern Economic Journal, 76(2), 328-350.
Buehn, A., & Farzanegan, M. R. (2012). Smuggling around the world: Evidence from a structural equation model. Applied Economics, 44(23), 3047-3064. doi: 10.1080/00036846.2011.570715
Bui, A. T., & Jun, C.-H. (2012). Learning Bayesian network structure using Markov blanket decomposition. Pattern Recognition Letters, 33(16), 2134-2140. doi: http://dx.doi.org/10.1016/j.patrec.2012.06.013
Bunin, B., Sutin, A., Kamberov, G., Roh, H. S., Luczynski, B., & Burlick, M. (2008). Fusion of acoustic measurements with video surveillance for estuarine threat detection. Paper presented at the Proceedings of SPIE - The International Society for Optical Engineering, Orlando.
Cate, F. H. (June 2008). Government Data Mining: The Need for a Legal Framework. Harvard Civil Rights-Civil Liberties Law Review, 43(2), 435-489.
Chawdhry, P. K. (2009, 13-16 Dec. 2009). Risk modeling and simulation of airport passenger departures process. Paper presented at the Simulation Conference (WSC), Proceedings of the 2009 Winter.
Chen, H., Atabakhsh, H., Wang, A. G., Kaza, S., Tseng, L. C., Wang, Y., . . . Violette, C. (2006). COPLINK center: Social network analysis and identity deception detection for law enforcement and homeland security intelligence and security informatics: A crime data mining approach to developing border safe research, San Diego, CA.
Chen, H., Chung, W., Xu, J. J., Wang, G., Qin, Y., & Chau, M. (2004). Crime data mining: a general framework and some examples. Computer, 37(4), 50-56. doi: 10.1109/mc.2004.1297301
Chen, H., Wang, F. Y., & Zeng, D. (2004). Intelligence and security informatics for homeland security: Information, communication, and transportation. IEEE Transactions on Intelligent Transportation Systems, 5(4), 329-341.
Chou, J.-S. (2012). Comparison of multilabel classification models to forecast project dispute resolutions. Expert Systems with Applications, 39(11), 10202-10211. doi: 10.1016/j.eswa.2012.02.103
Dombroski, M. J., & Carley, K. M. (2002). NETEST: Estimating a Terrorist Network’s Structure—Graduate Student Best Paper Award, CASOS 2002 Conference. Computational & Mathematical Organization Theory, 8(3), 235-241. doi: 10.1023/a:1020723730930
Edge, K. S., Dalton, G. C., Raines, R. A., & Mills, R. F. (2006, 23-25 Oct. 2006). Using Attack and Protection Trees to Analyze Threats and Defenses to Homeland Security. Paper presented at the Military Communications Conference, 2006. MILCOM 2006. IEEE, Washington DC, USA.
Farzanegan, M. R. (2009). Illegal trade in the Iranian economy: Evidence from a structural model. European Journal of Political Economy, 25(4), 489-507. doi: DOI: 10.1016/j.ejpoleco.2009.02.008
Frey, L., Fisher, D., Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003, 19-22 Nov. 2003). Identifying Markov blankets with decision tree induction. Paper presented at the Data Mining, 2003. ICDM 2003. Third IEEE International Conference on Melbourne, Florida, USA.
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine Learning, 29(2), 131-163. doi: 10.1023/a:1007465528199
Fu, S., & Desmarais, M. (2010). Feature selection by efficient learning of Markov blanket, London.
Groth, S. S., & Muntermann, J. (2011). An intraday market risk management approach based on textual analysis. Decision Support Systems, 50(4), 680-691. doi: 10.1016/j.dss.2010.08.019
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res., 3, 1157-1182.
Hájek, P. (2011). Municipal credit rating modelling by neural networks. Decision Support Systems, 51(1), 108-118. doi: DOI: 10.1016/j.dss.2010.11.033
Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, United States.
Holton, C. (2009). Identifying disgruntled employee systems fraud risk through text mining: A simple solution for a multi-billion dollar problem. Decision Support Systems, 46(4), 853-864. doi: 10.1016/j.dss.2008.11.013
Hruschka Jr, E. R., & Ebecken, N. F. F. (2007). Towards efficient variables ordering for Bayesian networks classifier. Data & Knowledge Engineering, 63(2), 258-269. doi: 10.1016/j.datak.2007.02.003
Hsieh, N.-C., & Hung, L.-P. (2010). A data driven ensemble classifier for credit scoring analysis. Expert Systems with Applications, 37(1), 534-545. doi: 10.1016/j.eswa.2009.05.059
Huang, C.-J., Wang, Y.-W., Huang, T.-H., Lin, C.-F., Li, C.-Y., Chen, H.-M., . . . Liao, J.-J. (2011). Applications of machine learning techniques to a sensor-network-based prosthesis training system. Applied Soft Computing, 11(3), 3229-3237. doi: 10.1016/j.asoc.2010.12.025
IBM. (2010). IBM SPSS Modeler 14.1 Algorithms Guide. Chicago: Integral Solutions Limited.
Jenner, M. S. (2011). International Drug Trafficking: A Global Problem with a Domestic Solution. [Article]. Indiana Journal of Global Legal Studies, 18(2), 901-927. doi: 10.2979/indjglolegstu.18.2.901
Jiang, Y., Shang, J., & Liu, Y. (2010). Maximizing customer satisfaction through an online recommendation system: A novel associative classification model. Decision Support Systems, 48(3), 470-479. doi: 10.1016/j.dss.2009.06.006
Kangning, W., Jinghua, H., & Shaohong, F. (2007, 9-11 June 2007). A Survey of E-Commerce Recommender Systems. Paper presented at the Service Systems and Service Management, 2007 International Conference on Chengdu, China.
Kaza, S., Wang, Y., & Chen, H. (2006). Suspect Vehicle Identification for Border Safety with Modified Mutual Information. Intelligence and Security Informatics. In S. Mehrotra, D. Zeng, H. Chen, B. Thuraisingham & F.-Y. Wang (Eds.), (Vol. 3975, pp. 308-318): Springer Berlin / Heidelberg.
Kaza, S., Wang, Y., & Chen, H. (2007). Enhancing border security: Mutual information analysis to identify suspect vehicles. Decision Support Systems, 43(1), 199-210. doi: 10.1016/j.dss.2006.09.007
Kazienko, P. (2007). Filtering of web recommendation lists using positive and negative usage patterns. Paper presented at the Proceedings of the 11th international conference, KES 2007 and XVII Italian workshop on neural networks conference on Knowledge-based intelligent information and engineering systems: Part III, Vietri sul Mare, Italy.
Kim, H.-N., Ha, I., Lee, K.-S., Jo, G.-S., & El-Saddik, A. (2011). Collaborative user modeling for enhanced content filtering in recommender systems. Decision Support Systems, 51(4), 772-781. doi: 10.1016/j.dss.2011.01.012
Kim, W. (2002). On database technology for US homeland security. Journal of Object Technology, 1(5), 43-49.
Kui, Y., Xindong, W., Wei, D., Hao, W., & Hongliang, Y. (2011, 11-14 Dec. 2011). Causal Associative Classification. Paper presented at the Data Mining (ICDM), 2011 IEEE 11th International Conference on Vancouver, BC, Canada.
Lee, M. S., Deng, M. C., Lin, Y. J., Chang, C. Y., Shieh, H. K., Shiau, J. Z., & Huang, C. C. (2007). Characterization of an H5N1 avian influenza virus from Taiwan. Veterinary Microbiology, 124(3-4), 193-201. doi: DOI: 10.1016/j.vetmic.2007.04.021
Lee, S. (2010). Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls. Decision Support Systems, 49(4), 486-497. doi: DOI: 10.1016/j.dss.2010.06.002
Lee, Y.-H., Hu, P. J.-H., Cheng, T.-H., & Hsieh, Y.-F. (2012). A cost-sensitive technique for positive-example learning supporting content-based product recommendations in B-to-C e-commerce. Decision Support Systems, 53(1), 245-256. doi: 10.1016/j.dss.2012.01.018
Liang, T.-P., Yang, Y.-F., Chen, D.-N., & Ku, Y.-C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412. doi: 10.1016/j.dss.2007.05.004
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE, 7(1), 76-80. doi: 10.1109/mic.2003.1167344
Luo, H., Wu, K., Guo, Z., Gu, L., Yang, Z., & Ni, L. M. (2011, 20-24 June 2011). SID: Ship Intrusion Detection with Wireless Sensor Networks. Paper presented at the Distributed Computing Systems (ICDCS), 2011 31st International Conference on Minneapolis, Minnesota, USA.
Madden, M. G. (2002). Evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm (N. U. o. I. Department of Information Technology, Trans.) (pp. 9). Galway Department of Information Technology, National University of Ireland.
Martin, L., & Panagariya, A. (1984). Smuggling, trade, and price disparity: A crime-theoretic approach. Journal of International Economics, 17(3-4), 201-217. doi: Doi: 10.1016/0022-1996(84)90020-5
Martonosi, S. E., Ortiz, D. S., & Willis, H. H. (2005). Evaluating the viability of 100 per cent container inspection at America’s ports. RAND Corporation.
Ministry of Finance. (2010). Yearbook of financial statistics of the Republic of China. Taipei: Ministry of Finance R.O.C. .
Murphy, P., & Aha, D. W. (1995). UCI repository of machine learning databases -- a machine-readable repository.
Narayanaswami, R., Gandhe, A., Tyurina, A., & Mehra, R. K. (2010, 8-10 Nov. 2010). Sensor fusion and feature-based human/animal classification for Unattended Ground Sensors. Paper presented at the Technologies for Homeland Security (HST), 2010 IEEE International Conference on Waltham, MA, USA.
Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473. doi: 10.1016/j.dss.2011.10.007
Pazzani, M., & Billsus, D. (1997). Learning and Revising User Profiles: The Identification ofInteresting Web Sites. Mach. Learn., 27(3), 313-331. doi: 10.1023/a:1007369909943
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In B. Peter, K. Alfred & N. Wolfgang (Eds.), The adaptive web (pp. 325-341): Springer-Verlag.
Phelan, O., McCarthy, K., & Smyth, B. (2009). Using twitter to recommend real-time topical news. Paper presented at the Proceedings of the third ACM conference on Recommender systems, New York, New York, USA.
Polat, H., & Du, W. (2008). Privacy-preserving top-N recommendation on distributed data. Journal of the American Society for Information Science and Technology, 59(7), 1093-1108. doi: 10.1002/asi.20831
Quinlan, J. R. (2007, February 2012). Data Mining Tools See5 and C5.0. Retrieved 4, May, 2012, from http://www.rulequest.com/see5-info.html
Ramirez-Marquez, J. E. (2008). Port-of-entry safety via the reliability optimization of container inspection strategy through an evolutionary approach. Reliability Engineering & System Safety, 93(11), 1698-1709. doi: 10.1016/j.ress.2008.01.003
Reiter, M., & Rohatgi, P. (2004). Homeland security. IEEE Internet Computing, 8(6), 16-17. doi: 10.1109/mic.2004.62
Schneider, S. (2000). Organized contraband smuggling and its enforcement in CANADA: an assessment of the anti-smuggling initiative. [Article]. Trends in Organized Crime, 6(2), 3.
Semeraro, G., Basile, P., Gemmis, M. d., & Lops, P. (2007). Content-based recommendation services for personalized digital libraries. Paper presented at the Proceedings of the 1st international conference on Digital libraries: research and development, Pisa, Italy.
Semeraro, G., Lops, P., Basile, P., & Gemmis, M. d. (2009). Knowledge infusion into content-based recommender systems. Paper presented at the Proceedings of the third ACM conference on Recommender systems, New York, New York, USA.
Shmueli, G., Patel, N. R., & Bruce, P. C. (2010). Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel. (2nd ed.). New Jersey: John Wiley and Sons, Inc.
Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining (1st ed.): Addison Wesley.
Tseng, T.-Y., Shiue, Y.-R., Ning, K.-C., Lin, S.-W., & Cheng, W.-M. (2009). Using new attribute construction to incorporate the expertise of human experts into a smuggling vessels classification system. Expert Systems with Applications, 36(4), 7773-7777. doi: DOI: 10.1016/j.eswa.2008.11.027
United States General Accounting Office. (February 2004). Aviation security: computer-assisted passenger prescreening system faces significant implementation challenges. (GAO-04-385). Washington, D.C.: United States General Accounting Office,.
van de Camp, M., & van den Bosch, A. (2012). The socialist network. Decision Support Systems, 53(4), 761-769. doi: 10.1016/j.dss.2012.05.031
Walden, J., & Kaplan, E. H. (2004). Estimating time and size of bioterror attack. Emerging Infectious Diseases, 10(7), 1202–1205. doi: 10.3201/eid1007.030632
Wang, Z., & Chan, L. (2012). Learning bayesian networks from Markov random fields: An efficient algorithm for linear models. ACM Trans. Knowl. Discov. Data, 6(3), 1-31. doi: 10.1145/2362383.2362384
Wein, L. M., Wilkins, A. H., Baveja, M., & Flynn, S. E. (2006). Preventing the Importation of Illicit Nuclear Materials in Shipping Containers. Risk Analysis, 26(5), 1377-1393. doi: 10.1111/j.1539-6924.2006.00817.x
Whitrow, C., Hand, D., Juszczak, P., Weston, D., & Adams, N. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30-55. doi: 10.1007/s10618-008-0116-z
Yifeng, Z., Jian, L., & Shuyuan, L. (2009, 17-19 Aug. 2009). Classification using Markov blanket for feature selection. Paper presented at the Granular Computing, 2009, GRC ’09. IEEE International Conference on Nanchang, China.
Zhu, F. (2011, 8-10 Aug. 2011). Mining ship spatial trajectory patterns from AIS database for maritime surveillance. Paper presented at the Emergency Management and Management Sciences (ICEMMS), 2011 2nd IEEE International Conference on Beijing, China. |