博碩士論文 100329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.238.254.78
姓名 蘇柏誠(Pai-Cheng Su)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
(The Structure-Activity Relationship of Carbon-Supported Pd3AuNi Catalysts for Ethanol Oxidation Reaction in Alkaline Solution)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究系統性的探討鈀觸媒(Pd/C)藉由金和鎳的添加,所形成二元和三元(Pd3Au/C, Pd3Ni/C和Pd3AuNi/C)觸媒之鹼性環境下乙醇氧化反應。所製備觸媒的金屬含量、乙醇氧化活性、結構、形貌、表面組成和表面物種可由熱重分析儀和感應耦合電漿原子發射光譜分析儀、循環伏安法、X光繞射分析儀和X光吸收能譜儀、高解析穿透式電子顯微鏡、X光電子能譜儀和程溫還原系統分析。
觸媒表面以氫氧化氧物形式所存在的鎳可以因雙功能機制(bi-functional mechanism)和溢流效應(spillover effect)來促進鈀觸媒之乙醇氧化反應的進行,而觸媒中的金可修飾鈀的晶格和電子結構以促進乙醇分子的吸附。根據常溫下計時伏安法的結果,鈀金鎳觸媒在四小時乙醇氧化反應後的質量電流密度為鈀和鈀金觸媒之1.39和1.10倍,此鈀金鎳觸媒穩定性的提升乃歸因於金和鎳的合金化增益效應。
為了進一步增進鈀金鎳觸媒的乙醇氧化能力,以電化學去合金法(dealloying)和熱處理法改質。鈀金鎳觸媒在去合金化、一氧化碳和氧氣熱處理後的乙醇氧化能力下降。而在560 K氫氣熱處理或還原後的鈀金鎳觸媒,在兩小時乙醇氧化反應後,其質量電流密度各為鈀金鎳觸媒的1.16和1.41倍,此乃歸因於表面鈀的含量和表面金屬態鈀的增加。因此適當的表面組成和表面金屬態對於提升鈀金鎳觸媒的穩定性為一非常重要的因素。
摘要(英) The effect of Au and/or Ni addition on the ethanol oxidation reaction (EOR) performance in alkaline media of Pd based binary and ternary catalysts (Pd3Au/C, Pd3Ni/C, and Pd3AuNi/C) is systematically elucidated. The metal loading, EOR activities, structures, morphologies, surface compositions and surface species of the prepared catalysts are analyzed by the thermal gravimetric analysis (TGA) and inductively coupled plasma-atomic emission spectrometer (ICP-AES), cyclic voltammetry (CV), X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR), respectively.
It is observed that the surface Ni with the chemical state of NiOOH can promote the EOR through bi-functional mechanism and spillover effect while surface Au can modify the Pd lattice and electron configuration which is helpful for the absorption of ethanol molecular. Chronoamperometric (CA) results obtained at room temperature demonstrate that the mass current density of ternary Pd3AuNi/C catalysts after the long-term EOR test for 4 h is about 1.39 and 1.10 times higher than that of the monometallic Pd/C and binary Pd3Au/C catalysts, respectively. It is proposed that the enhancement in EOR stability of Pd3AuNi can be attributed to the synergistic effect of Ni and Au alloying.
The Pd3AuNi catalysts are then further modified by electrochemical dealloying or heat treatment processes in order to promote their EOR performance. The dealloying process or heat treatment at CO or O2 do not have positive effect on the EOR activity of the Pd3AuNi catalysts. For the Pd3AuNi catalysts heat-treated and reduced in H2 at 560 K, after CA test of 2 hours, the mass current density is about 1.16 and 1.41 times higher than that of the as-prepared Pd3AuNi catalysts. This result is attributed to the increase in surface Pd content and metallic states after the heat treatment or reduction in H2 at 560 K. Therefore, the proper surface composition and chemical states are essential for the improvement in the stability of Pd3AuNi catalysts.
關鍵字(中) ★ 鈀金鎳觸媒
★ 乙醇氧化反應
★ 鹼性溶液
★ 長時間穩定性
★ X光吸收能譜儀
★ 程溫還原系統
★ 去合金
★ 熱處理
關鍵字(英) ★ PdAuNi catalysts
★ ethanol oxidation reaction (EOR)
★ alkaline solution
★ long-term stability
★ X-ray absorption spectroscopy (XAS)
★ temperature-programmed reduction (TPR)
★ dealloying
★ heat-treatment
論文目次 摘要 i
Abstract iii
誌謝 v
Table of Contents vii
List of Figures x
List of Tables xii
Chapter I Introduction 1
1.1 The EOR Mechanism of Pd in Alkaline Solution 2
1.2 Catalysts for EOR in Alkaline Media 7
1.3 The Effect of Reducing Temperature and Heat Treatment 14
1.4 The Effect of Dealloying Process 16
1.5 Motivation and Approach 17
Chapter II Experimental Section 18
2.1 Preparation of Pd3AuNi/C Catalysts 18
2.2 Modification of Pd3AuNi Catalysts 21
2.2.1 Heat treatment of the catalysts 21
2.2.2 Electrochemical dealloying treatment 21
2.3 Characterization of Catalysts 23
2.3.1 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) 23
2.3.2 Thermal gravimetric analysis (TGA) 23
2.3.3 X-ray diffraction (XRD) 23
2.3.4 High resolution transmission electron microscope (HRTEM) 23
2.3.5 Temperature programmed reduction (TPR) 25
2.3.6 X-ray photoelectron spectroscopy (XPS) 25
2.3.7 X-ray absorption spectroscopy (XAS) 25
2.3.8 Electrochemical measurements 27
Chapter III Results and Discussion 29
3.1 The Structure-Activity Relationship of the Pd, Pd3Au, Pd3Ni and Pd3AuNi Catalysts 30
3.1.1 ICP and TGA characterization 30
3.1.2 HRTEM characterization 30
3.1.3 XRD characterization 35
3.1.4 XAS characterization 37
3.1.5 XPS characterization 37
3.1.6 TPR characterization 42
3.1.7 EOR activity 44
3.1.8 CA test 48
3.1.9 Summary 54
3.2 The Effect of Dealloying Process on the Electrochemical Performance of Pd3AuNi Catalysts 57
3.3 The Effect of Heat Treatment on the Electrochemical Performance of Pd3AuNi catalysts 59
3.3.1 The stability of Pd3AuNi after heat treated at different atmospheres 59
3.3.2 XRD characterization of Pd3AuNi reduced and treated at 560 K in H2 59
3.3.3 XPS characterization of Pd3AuNi reduced and treated at 560 K in H2 62
3.3.4 CA test of Pd3AuNi reduced and treated at different temperatures in H2 62
3.3.5 Summary 65
Chapter IV Conclusions 67
References 68
參考文獻 [1] H. Li, G. Suna, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 52 (2007) 6622.
[2] J. Zhang, P. K. Shen, 1st ed. Springer (2008).
[3] A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O’Hare, D. M. Kammen, Science 311 (2006) 506.
[4] A. Ermete, J. Power Sources 170 (2007) 1.
[5] F. Hu, C. Chen, Z. Wang, G. Wei, P. K. Shen, Electrochim. Acta 52 (2006) 1087.
[6] S. Y. Shen, T. S. Zhao, J. B. Xu, Y. S. Li, J. Power Sources 195 (2010) 1001.
[7] E. Antolini, E. R. Gonzalez, J. Power Sources 195 (2010) 3431.
[8] A. V. Tripkovic, K. D. Popovic, B. N. Grgur, B. Blizanac, P. N. Ross, N. M. Markovic, Electrochim. Acta 47 (2002) 3707.
[9] Z. X. Liang, T. S. Zhao, J. B. Xu, L. D. Zhu, Electrochim. Acta 54 (2009) 2203.
[10] J. Liu, J. Ye, C. Xu, S. P. Jiang, Y. Tong, Electrochem. Commun. 9 (2007) 2334.
[11] Z. Zhang, L. Xin, K. Sun, W. Li, Int. J. Hydrogen Energy 36 (2011) 12686.
[12] Z. Y. Zhou, Q. Wang, J. L. Lin, N. Tian, S. G. Sun, Electrochim. Acta 55 (2010) 7995.
[13] L. Wang, V. Bambagioni, M. Bevilacqua, C. Bianchini, J. Filippi, A. Lavacchi, J. Power Sources 195 (2010) 8036.
[14] R. Mancharan, J. B. Goodenough, J. Mater. Chem. 2 (1992) 875.
[15] F. Cheng, X. Daia, H. Wang, S. P. Jiang, M. Zhang, C. Xu, Electrochim. Acta 55 (2010) 2295.
[16] J. Huang, Z. Liu, C. He, L. M. Gan, J. Phys. Chem. B 109 (2005) 16644.
[17] P. K. Shen, C. Xu, Electrochem. Commun. 8 (2006) 184.
[18] G. Cui, S. Song, P. K. Shen, A. Kowal, C. Bianchini, J. Phys. Chem. C 113 (2009) 15639.
[19] C. Xu, L. Cheng, P. Shen, Y. Liu, Electrochem. Commun. 9 (2007) 997.
[20] Q. He, W. Chen, S. Mukerjeea, S. Chenb, F. Laufek, J. Power Sources 187 (2009) 298.
[21] F. Grain, Catal. Today 89 (2004) 255.
[22] A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Norskov, J. Mol. Catal. A: Chem. 115 (1997) 421.
[23] J. Greeley, J. K. Norskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53 (2002) 319.
[24] Y. Wang, T. S. Nguyen, X. Liu, X. Wang, J. Power Sources 195 (2010) 2619.
[25] U. B. Demirci, J. Power Sources 173 (2007) 11.
[26] Z. Qi, H. Geng, X. Wang, C. Zhao, H. Ji, C. Zhanga, J. Xu, Z. Zhanga, J. Power Source 196 (2011) 5823.
[27] V. Bambagioni, M. Innocenti, ChemSusChem 2 (2009) 99.
[28] Y. C. Wei, C. W. Liu, W. D. Kang, C. M. Lai, L. D. Tsai, K. W. Wang, J. Electroanal. Chem. 660 (2011) 64.
[29] J. B. Xu, T. S. Zhao, S. Y. Shen, Y. S. Li, Int. J. Hydrogen Energy 35 (2010) 6490.
[30] N. Du, H. Zhang, X. Ma, D. Yang, Chem. Commun. (2008) 6182.
[31] K. A. Assiongbon, D. Roy, Surf. Sci. 594 (2005) 99.
[32] Z. Wu, S. Zhou, H. Zhu, S. Dai , S. H. Overbury, Chem. Commun. 29 (2008) 3308.
[33] Z. Liu, B. Zhao, C. Guo, Y. Sun, F. Xu, H. Yang, J. Phys. Chem. C 113 (2009) 16766.
[34] K. Faycal, R. Laurence, K. Bineta, N. Louis, B. Patricia, R. Hynd, Chem. Mater. 21 (2009) 3677.
[35] L. D. Zhu, T. S. Zhao, J. B. Xu, Z. X. Liang, J. Power Sources 187 (2009) 80.
[36] C. W. Liu, Y. W. Chang, Y. C. Wei, K. W. Wang, Electrochim. Acta 56 (2011) 2574.
[37] F. Colmati, A. Ermete, E. R. Gonzalez, Appl. Catal. B Environ 73 (2007) 106.
[38] D. Jayati, D. Abhijit, M. Sanjeev, J. Phys. Chem. C 115 (2011) 15324.
[39] X. Wang, N. Kariuki, J. T. Vaughey, J. Goodpaster, R. Kumar, D. J. Myers, J. Electrochem. Soc. 155 (2008) 602.
[40] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096.
[41] S. Y. Huang ,S. M. Chang ,C. L. Lin, C. H. Chen, C. T. Yeh, J. Phys. Chem. B 110 (2006) 23300.
[42] D. B. Kim, H. J. Chun, Y. K. Lee, H. H. Kwon, H. I. Lee, Int. J. Hydrogen Energy 35 (2010) 313.
[43] X. Li, I. M. Hsing. Electrochim. Acta 52 (2006) 1358.
[44] C. W. Liu , Y. C. Wei, K. W. Wang, Chem. Commun. 46 (2010) 2483.
[45] B. J. Hwang, L. S. Sarma, G. R. Wang, C. H. Chen, D. G. Liu, H. S. Sheu, J. F. Lee, Chem. Eur. J. 13 (2007) 6255.
[46] N. Tsiouvaras, M. V. Martínez-Huerta, O. Paschos, U. Stimming, J. L. G. Fierro, M. A. Peña, J. Hydrogen Energy (35) 2010 11478.
[47] S. Koh, P. Strasser, J. Am. Chem. Soc. 129 (2007) 12624.
[48] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995.
[49] Y. C. Wei, T. Y. Chen, C. W. Liu, T. S. Chan, J. F. Lee, C. H. Lee, Catal. Sci. Technol. 2 (2012) 1654.
[50] K. W. Wang, S. R. Chung, C. W. Liu, J. Phys. Chem. C 112 (2008) 10242.
[51] J. F. Watts, J. Wolstenholme, 2nd ed. Wiley (2003).
[52] Y. Gauthier, R. Baudoing-Savois, J. M. Bugnard, W. Hebenstreit, M. Schmid, P. Varga, Surf. Sci. 446 (2000) 155.
[53] P. Wynblatt, A. Landa, Comput. Mater. Sci. 15 (1999) 250.
[54] Y. C. Wei, C. W. Liu, H. W. Lee, S. R. Chung, S. L. Lee, T. S. Chan, Int. J. Hydrogen Energy 36 (2011) 3789.
[55] K. W. Wang, C. T. Yeh, J. Colloid Interface Sci. 325 (2008) 203.
[56] Y. C. Wei, C. W. Liu, K. W. Wang, Chem. Commun. 47 (2011) 11927.
[57] R. V. Wandekar, M. Ali, B. N. Wani, S. R. Bharadwaj, Mater. Chem. Phys. 99 (2006) 289.
[58] V. Bambagioni, C. Bianchini, Y. Chen, J. Filippi, P. Fornasiero, M. Innocenti, ChemSusChem 5 (2012) 1266.
[59] C. Xu, P. K. Shen, Y. Liu, J. Power Sources 164 (2007) 527.
[60] S. Q. Song, W. J. Zhou, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, V. Leontidis, Int. J. Hydrogen Energy 30 (2005) 995.
[61] S. Kontou, P. TsiakarasY. Suo, I. M. Hsing. J. Power Sources 196 (2010) 7945.
[62] X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, C. Zhang, J. Xu, Z. Zhang, Electrochem. Commun. 11 (2009) 1896.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2013-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明