博碩士論文 965403009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:18.219.137.74
姓名 楊長暻(Chang-jing Yang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 電泳式顯示器之影像再現技術
(Image reproduction techniques for electrophoretic displays)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,紙本書籍的閱讀習慣逐漸被電子閱讀器所取代,以電泳式顯示器作為顯示的電子書閱讀器具有幾個特點,首先,電泳式顯示器是反射式的顯示器,相較於穿透式顯示器(如液晶顯示器),電泳式顯示器其反射日光的觀看模式讓閱讀者的眼睛感到較為舒適,並且擁有寬廣的視角。其次,電泳式顯示器是雙穩態的顯示器,當閱讀器沒有電力供給時可以維持畫面,僅在更換畫面時才需供給電力。然而,除了上述優點,電泳式顯示器同時也具有下列缺點,首先,由於電泳式顯示器的顯像粒子反應時間長於數個微秒,導致畫面更換速度慢。其次,單色的電泳式顯示器的對比度低於10,裝置彩色濾光片後的彩色電泳式顯示器僅能顯示小部分標準RGB色彩空間(sRGB),因而導致影像的畫面品質不佳。
本論文以三個章節探討電泳式顯示器影像再現之問題與其解決方法。第二章首先以不同的脈波調變方式分別驅動電泳式顯示器,並量測分析其反射率。我們提出一種程式化驅動波形設計方法,以減低該顯示器之影像更新時間。接著討論基於其電泳式顯示器顯像粒子帶電量之驅動波形設計,顯像粒子之充電機制由摩擦充電及接觸充電構成,於驅動該顯示器時,由驅動波形之區間完成顯像粒子之的充電。我們提出一種驅動波形之設計方法,讓顯像粒子保持在適宜的帶電量,使得電泳式顯示器達到較佳之反射率。本章最後討論電泳式顯示器的影像雜訊,經分析為不均勻的顯像粒子分佈而導致,我們提出影像補償系統以改善影像雜訊的問題。
第三章提出以多線式演算法應用於驅動電泳式顯示器以達到提升更新畫面速度的優點。然而,由於電泳式顯示器的光電反應為非線性,以非負矩陣分解法(nonnegative matrix factorization)產生的矩陣為數位驅動信號時,再現影像將產生大量的雜訊。因此,我們提出適用於電泳式顯示器的無損失多線式驅動演算法,此演算法非但提升更新畫面速度同時亦可改善其再現影像的雜訊。
第四章討論彩色影像再現於電泳式顯示器的問題與解決方法。針對電泳式顯示器對比度不足而產生之色彩不匹配及假輪廓問題,提出結合色彩對應方法與後抖動方法,可達到改善電泳式顯示器假輪廓現象與增加影像重現之對比度。由各章節實驗結果可以發現,我們所提出的方法皆可以有效改善電泳式顯示器之再現影像品質與提升畫面更新速度。
摘要(英) In recent years, electronic readers have gradually replaced hard copies of books in the consumer market. Electrophoretic displays (EPDs) have become popular candidates used for the display of electronic readers because of several superior features. First, they are reflective displays, which are more comforTable to read on than transmissive displays. Second, they are bisTable, in that an image can be maintained on the observing surface when power is not being supplied. Power is only consumed when an image is being refreshed. However, several issues should be solved. First, the contrast ratios of the optical reflectance of monochromatic EPDs are less than 10. The color gamut of EPDs equipped with color filter is much lower than that of standard RGB (sRGB) color space. This may lead to a poor image reproduction quality because of the low image contrast. Second, the response time of pigment particle of EPDs is longer than several tens of milliseconds. This may leads to a slow image refreshing rate. This dissertation has three Chapters to discuss the problems and solutions related to the reproduction of images on electrophoretic displays (EPDs).
In Chapter 2, the electro-optical response of EPDs has been analyzed when the driver uses different pulse modulation schemes. We proposed a programmed driving waveform and a design process to speed up the image-updating rate of an EPD. Driving waveforms based on the particle charge of EPDs are investigated. The charging mechanisms of contact charging and triboelectric charging determine the particle charge of EPDs. Driving waveforms containing both charging mechanisms are proposed for driving EPDs. In addition, we discuss the image noises on EPDs. Nonuniform optical response and powder clustering become visible when an observer is moving close to the image. We proposed an image compensation system to mitigate the nonuniformity on an EPD.
In Chapter 3, multiline addressing (MLA) schemes for EPDs have been developed for improving the driving efficiency. Compared with the conventional row-by-row scheme, MLA is observed to improve the image refreshing rate by lowering the rank of the basis matrix. Since the electro-optical response of an EPD is not a linear curve, the MLA scheme using nonnegative matrix factorization (NMF) produces a noisy image on EPDs. Therefore, we have proposed a lossless matrix factorization (LMF) method. The MLA scheme using LMF not only improves the image refreshing rate but also shows images without noise.
In Chapter 4, we discuss the problems and solutions related to the reproduction of color images on EPDs. A novel system consisting of a post-dithering algorithm and a hybrid gamut mapping algorithm is proposed to deal with false contouring and gamut mismatches, respectively. The proposed system mitigates the false contouring and increases the contrast in images. The experimental results in each Chapter show that our proposed methods improve image reproduction quality and speed up the image-updating rate of EPDs.
關鍵字(中) ★ 電泳式顯示器
★ 驅動波形
★ 多線式驅動
關鍵字(英) ★ EPD
★ electrophoretic display
★ MLA
★ multiline addressing
★ drving waveform
論文目次 1. Introduction 1
1.1. Electrophoretic displays (EPDs) 1
1.2. Objectives 3
2. Driving schemes 6
2.1. Movements and charge mechanisms 6
2.2. Electro-optical response 7
2.2.1. Experimental method 7
2.2.2. Experimental results 9
2.3. Programmed pulse modulation 12
2.3.1. Objective formulation 13
2.3.2. Curve fitting 14
2.3.3. Design flowchart 14
2.3.4. Experimental results 15
2.4. Driving waveform based on particle charge 17
2.4.1. Particle charge 17
2.4.2. Experimental results 19
2.5. Image noise 23
2.5.1. Nonuniform optical response 23
2.5.2. Image compensation 26
2.6. Summary 29
3. Multiline Addressing (MLA) Schemes 34
3.1. Introduction 34
3.2. Basic addressing scheme 36
3.3. Multime addressing using pulse number modulation 37
3.3.1. Nonnegative matrix factorization (NMF) 38
3.3.2. Lossless matrix factorization (LMF) 41
3.4. Implementation architecture 44
3.5. Experimental results 46
3.6. Summary 49
4. Image rendition 50
4.1. Monochromatic image rendition 50
4.1.1. False contouring 50
4.1.2. Digital halftoning 51
4.1.2.1. System architecture 52
4.1.2.2. Objective function 53
4.1.2.3. Proposed algorithm 57
4.1.3. Experimental results 58
4.2. Chromatic image rendition 61
4.2.1. Color gamut 61
4.2.2. Gamut mapping 62
4.2.2.1. System architecture 63
4.2.2.2. Mapping 64
4.2.3. Experimental results 66
4.3. Summary 68
5. Conclusions 69
List of Publications 71
References 72
參考文獻 [1] P. F. Evans, H. D. Lee, M. S. Maltz, and J. L. Dailey, U. S. Patent 3,612,758,12 Oct. 1971.
[2] J. D. Albert, B. Comiskey, U. S. PAT. 6,067,185, 27 Aug. 1998.
[3] R. C. Liang, J. Hou, H. Zang, J. Chung, and S. Tseng, “Microcup displays: Electronic paper by roll-to-roll manufacturing processes,” J. Soc. Inf. Display, vol. 11, no. 4, pp. 621-628, Dec. 2003.
[4] R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel bisTable reflective display using quick-response liquid powder,” J. Soc. Inf. Display, vol. 12, no. 1, pp. 75-78, Mar. 2004.
[5] Y. Masuda, N. Nihei, R. Sakurai, and R. Hattori, “A reflective-display QR-LPD,”J. Soc. Inf. Display, vol. 14, no. 5, pp. 443-448, May 2006.
[6] R. Hattori, S. Wakuda, M. Asakawa, Y. Masuda, N. Nihei, A. Yokoo, and S. Yamada, “Three-voltage-level driver driven quick-response liquid powder display,” Soc. Inf. Display Symposium Digest, vol. 37, issue 1, pp. 1410-1413, Jun. 2006.
[7] M. Asakawa, T. Nakashima, R. Hattori, Y. Masuda, N. Nihei, A. Yokoo, and S. Yamada, “Improvement of contrast ratio in QR-LPD by four-voltage level driving,” in Proc. 2006 9th Asian Symposium on Information Display(ASID), Oct. 2006, pp. 148-151.
[8] T. Bert, H. D. Smet, F. Beunis, and K. Netyts, “Complete electrical and optical simulation of electronic paper,” Displays, vol. 27, no. 2, pp. 50-55, Nov. 2005.
[9] M. A. Hopper and V. Novotny, “An electrophoretic display, its properties, model, and addressing,” IEEE Trans. Electron. Devices, vol. 26, no.8, pp. 1148-1152, Aug. 1979.
[10] V. Novotny, “Measurement of mobilities of particles in liquids by optical and electrical transients,” J. Appl. Phys., vol. 50, no. 4, pp. 2787-2794, Apr. 1979.
[11] N. Kaga, G. Yakushiji, H. Tazawa, M. Masutani, T. Kobayashi, T. Arai, K. Murata, R. Sakurai, Y. Kobayashi, H. Tamura, H. Anzai, H. Yamasaki, Y. Nishimuro, K. Machida, U.S. Patent 7,236,291, Jun. 2007.
[12] R. Sakurai, K. Akuzawa, H. Yamazaki, H. Anzai, H. Kitano, K. Murata, G. Yakushiji, N. Kaga, T. Kobayashi, T. Arai, Y. Masuda, U.S. Patent 7,495,819, Feb. 2009.
[13] S. Yamada, S. Wakuda, and R. Hattori, “Gray scale for QR-LPD,” IEICE Tech. Rep., vol. 103, no. 593, pp. 41-44, Jan. 2004.
[14] W. C. Kao, “Electrophoretic display controller integrated with real-time halftoning and partial region update,” J. Disp. Technol., vol. 6, no. 1, pp. 36-44, Jan. 2010.
[15] W. C. Kao, J. A. Ye, F. S. Lin, P. Y. Cheng, and R. Sprague, “Configurable timing controller design for active matrix electrophoretic display,” IEEE Trans. Cons. Electr., vol. 55, no. 1, pp. 1-5, Feb. 2009.
[16] T. N. Pappas, J. P. Allebach, and D. L. Neuhoff, “Model-based digital halftoning,” IEEE Signal Process. Mag., vol. 20, no. 4, pp. 14-27, Jul. 2003.
[17] C. M. Lu and C. L. Wey, “A controller design for micro-capsule active matrix electrophoretic displays,” J. Disp. Technol., vol. 7, no. 8, pp. 434-442, Jul. 2011.
[18] C. M. Lu and C. L. Wey, “A controller design for color active-matrix displays using electrophoretic inks and color filters,” J. Disp. Technol., vol. 7, no. 9, pp. 482-489, Jul. 2011.
[19] C. J. Yang and Y. F. Chen, “Programmed driving waveform for quick-response liquid powder displays,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2043-2046, Nov. 2010.
[20] C. J. Yang and Y. F. Chen, “Driving waveform based on powder charge for a quick-response liquid powder display,” J. Soc. Inf. Display, vol. 20, no. 6, pp. 300-303, Jun. 2012.
[21] C. J. Yang and Y. F. Chen, “Improvement of nonuniformoptical response and powder clustering for QR-LPD,” accepted by J. Imaging Sci. Techn., Oct. 2013.
[22] C. J. Yang and Y. F. Chen, “Constrained non-negative matrix factorization for multiline addressing schemes of quick-response liquid powder display,” Displays, vol. 30, issue2, pp. 75-80, Apr. 2013.
[23] C. J. Yang and Y. F. Chen, “Color image reproduction on electrophoretic display,” submitted to Eurasip J. Image Vide., 2012.(under revision)
[24] N. Kaga and T. Arai. Patent 7,483,201, Jun. 2009.
[25] J. S. Chang, A. J. Kelly, and J. M. Crowley, Handbook of electrostatic processes, New York: Marcel Dekker, Inc. 1995.
[26] G. S. P. castle and L. B. Schein, “General model of sphere-sphere insulator contact electrification,” J. Electrostatics, vol. 36, pp. 165-173, 1995.
[27] H. R. Kang, Digital Color Halftoning, SPIE Press: Belliham, 1999.
[28] N. Kaga, G. Yakushiji, H. Tazawa, M. Masutani, T. Kobayashi, T. Arai, K. Murata, R. Sakurai, Y. Kobayashi, H. Tamura, H.Anzai, H. Yamasaki, Y. Nishimuro, and K. Machida, U.S. Patent 7,236,291, Jun. 2007.
[29] T. N. Ruckmongathan, “Novel addressing methods for fast responding LCDs,” Asahi Garasu Kenkyu Hokoku, vol. 43, no. 1, pp. 65-87, Jan. 1993.
[30] E. C. Smith, “Total matrix addressing,” J. Soc. Inf. Display, vol. 16, pp. 201-209, Feb. 2008.
[31] M. Asakawa, S. Kaneko, R. Hattori, Y. Masuda, N. Nihei, A. Yokoo, and S. Yamada, “Multi-line driving of QR-LPD,” IEICE Tech. Rep., vol.107, no. 453, pp. 93-96, Jan. 2008.
[32] S. Kaneko, M. Asakawa, R. Hattori, Y. Masuda, N. Nihei, A. Yokoo, and S. Yamada, “Multiline addressing of quick-response liquid powder display (EPD) using non-negative matrix factorization,” in Proc. 2008 15th International Display Workshops (IDW), Dec. 2008, pp. 1267-1270,.
[33] M. Asakawa, S. Kaneko, and R. Hattori, “Shrunk multiline addressing method in a passive-matrix-driven liquid powder display,” J. Soc. Inf. Display, vol. 19, no. 10, pp. 693-699, Oct. 2011.
[34] D. D. Lee and H. S. Seung, “Algorithm for non-negative matrix factorization,” in Proc. 2000 Neural Information Processing Systems: Natural and Synthetic (NIPS), Nov. 2001, pp. 556-562.
[35] C. J. Lin, “Projected gradient methods for non-negative matrix factorization,” Neural Comput., vol. 19, no. 10, pp. 2756-2779, Oct. 2007.
[36] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, “Algorithms and application for approximate nonnegative matrix factorization,” Comput. Stat. Data An., vol. 52, no. 1, pp. 155-173, 2007.
[37] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson Education, 2008.
[38] R. Ulichney, Digital halftoning, The MIT Press, 1987.
[39] J. Morovic, Color Gamut Mapping, Wiley, 2008.
[40] G. Sharma, Digital color imaging, CRC press, 2002.
[41] H. R. Kang, Computational color technology, SPIE Press, 2006.
指導教授 陳永芳(Yung-fang Chen) 審核日期 2013-4-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明