參考文獻 |
[1] “Optimization of quadrature modulator performance,” Technical Notes and Articles,
RF Micro Devices Inc.
[2] 陳憲瑞,“無線寬頻系統之前端接收機與頻率合成器暨V頻段除頻器之研製”,民國96年7月。
[3] K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5 mW W-band frequency divider with wide-locking-range in 90-nm CMOS technology,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 466–628.
[4] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62 GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in IEEE RFIC Symp. Dig. Papers, 2008, pp. 435–438.
[5] J.-C. Chien and L.-H. Lu, “A 40 GHz wide-locking-range frequency divider and low-phase-noise balanced VCO in 0.18-μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 544–621.
[6] S.-L. Jang, C.-F. Lee, and W.-H. Yeh, “A wide-locking-range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390–392, Feb. 2010.
[7] X.-P. Yu et al., “A 3 mW 54.6 GHz divide-by-3 injection-locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 575–577, Sep. 2009.
[8] S.-L. Jang and C.-W Chang, “A 90-nm CMOS LC-tank divide-by-3 injection locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229–231, Apr. 2010.
[9] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 2472–2481.
[10] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 Ghz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[11] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393–405, Feb. 2011.
[12] J. Hu and B. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90-nm CMOS”, in IEEE RFIC Symp. Dig. Papers, pp. 665–668, 2008.
[13] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[14] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford, New York, pp. 1112-1113, 1998.
[15] F. Maloberti and M. Signorelli, “Quadrature waveform generator with enhanced
performances”, Symposium on VLSI Circuits Digest of Technical Papers, pp. 56-57,
1998.
[16] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 6, pp. 813-821, June 1996.
[17] A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part I: Architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 515–534, Apr. 1998.
[18] C.-T. Lu, H.-H. Hsieh, and L.-H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[19] K.-W. Cheng and D. J. Allstot, “A gate-modulated CMOS LC quadrature VCO,” in IEEE Radio Freq. Integrated Circuits Symp. Dig., 2009, pp. 267–270.
[20] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 1737–1747, Dec. 2002
[21] WIN Semiconductors, “0.5-μm InGaAs pHEMT enhancement/depletion-model device (E/D-mode) device model handbook,” ver.1.0.1, May, 2006.
[22] R. M. Weng and J. Y. Lin, “A 2.4 GHz low phase noise voltage controlled oscillator, ” Proceedings of Progress in Electromagnetics Research Symposium, eijing, 23-27 March 2009, pp. 546-550.
[23] H.-Y. Chang, Y.-S. Wu, and Y.-C. Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-pHEMT process,” IEEE Microwave and Wireless Comp. Lett. vol. 19, no. 07, pp. 467-496, July. 2009.
[24] J. Lin, K. Y. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 379–381, Nov. 1995.
[25] K. Kamozaki, N. Kurita, W. Hioe, T. Tanimoto, H. Ohta, T. Nakamura, and H. Kondoh, “A 77 GHz T/R MMIC chip set for automotive radar systems,” in 1997 GaAs IC Symp. Dig., pp. 275-278.
[26] M. Klotz, and H. Rohling, “24-GHz radar sensors for automotive applications,” 2000 Microwave Radar and Wireless Communications Conference Dig., vol. 1, May 2000, pp. 359-362.
[27] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, “A compact and low-phase-noise Ka-Band pHEMT-based VCO,” IEEE Trans.Microw. Theory Tech., vol. 51, no. 3, pp. 778–783, Mar. 2003.
[28] S. Choi and K. Yang, “Low-voltage low-power K-band balanced RTD-based MMIC VCO,” in IEEE MTT-S Int. Dig., Jun. 2006, pp. 743–746.
[29] H.-C. Chiu, C.-C. Wei, C.-S. Cheng, and Y.-F. Wu, “Phase-noise improvement of GaAs pHEMT K-band voltage-controlled oscillator using tunable field-plate voltage technology,” IEEE Electron Device Lett., vol. 29, no. 5, pp. 426–429, May 2008.
[30] C.-C. Chiong, H.-Y. Chang, and M.-T. Chen, “Wide-bandwidth InGaP-GaAs HBT voltage-controlled oscillators in K- and Ku-band,” in Proceeding of Global Symposium on Millimeter ave (GSMM), Nanjing, Apr. 2008, pp. 185-188.
[31] C.-C. Chiong, H.-Y. Chang, M.-T. Chen, “Ka-band wide-bandwidth voltage-controlled oscillator in InGaP-GaAs HBT technology,” in European Microw. Integr. Circuit, Oct. 2008, pp. 358-361.
[32] Y.-J. E. Chen, W.-M. L. Kuo, Z. Jin, J. Lee, Y. V. Tretiakov, J. D. Cressler, J. Laskar, and G. Freeman, “A low-power Ka-band voltage-controlled oscillator implemented in 200-GHz SiGe HBT technology,” IEEE Trans. on Microwave Theory and Techniques, vol. 53, no. 5, pp. 1672-1681, May 2005.
[33] B. Jung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2359–2370, Dec. 2004.
[34] A. Scuderi, and G. Palmisano, “A low-phase-noise voltage-controlled oscillator for 17-GHz applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, Apr. 2006.
[35] K.-H.Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5-mW W-band frequency divider with wide-locking range in 90-nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.2008, pp. 466–467.
[36] Y.-T. Chiu, C.-H. Lin, and H.-Y. Chang, “Design and analysis of two modified colpitts VCOs with and without transforme-feedback,” Microwave Integrated Circuits Conference (EuMIC), pp. 430–433, 2011.
[37] T.-N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620–625, Mar. 2008
[38] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[39] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: A possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp.1578–1584, Sep. 1997.
[40] K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide-locking-range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug.1997.
[41] F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[42] W.-L. Chan, and J.-R. Long., “A 56-65 GHz injection-locked frequency tripler with quadrature output in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[43] S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F.Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in IEEE RFIC Symp. Dig, Jun. 2008, pp. 131–134.
[44] C.-N. Kuo, and T.-Z. Yan, “A 60-GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
[45] Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65-nm CMOS,” in 2010 IEEE MTT-S Int. Microwave Symp. Dig., May 2010.
[46] F. Maloberti and M. Signorelli, “Quadrature waveform generator with enhanced performances,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 56-57, 1998.
[47] P. Andreani, “A 2-GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002, pp. 815–818.
[48] P. Andreani, A. Bonfanti, L. Romanò, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737–1747, Dec. 2002
[49] John R. Long, “Monolithic transformers for silicon RF IC design”, IEEE J. Solid-State Circuits, vol. 35, no. 9, Sept 2000
[50] C.-K. Hsieh, K.-Y. Kao, Jeffrey Ronald Tseng, and K.-Y. Lin, “A K-Band CMOS low power modified colpitts VCO using transformer-feedback,” IEEE MTT-S Int Microw. Symp. Dig., 2009, pp. 1293-1296.
[51] K. C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer-feedback,” IEEE J. Solid-State Circuits,vol. 40, no. 3, pp. 652–660, Mar. 2005.
[52] T.-H. Huang, and Y.-R. Tseng, “A 1-V 2.2-mW 7-GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 10, pp. 698-700, Oct. 2008.
[53] Y.-C. Chang, Y.-C. Chiu, S.-G. Lin, Y.-Z. Juang, and H.-K. Chiou, “High phase accuracy on-wafer measurement for quadrature voltage-controlled oscillator,” 37th European Microwave Conference (EuMC), Munich, Germany, pp. 340–343. Oct. 2007
[54] S. Hackl, J. Böck, G. Ritzberger, M. Wurzer, and A. L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 135–137, Jan. 2003.
[55] M. Sanduleanu and E. Stikvoort, “Highly linear, varactor-less, 24-GHz IQ oscillator,” in IEEE RFIC Symp. Dig., Jun. 2005, pp. 577–580.
[56] Tormanen, M. Sjoland, H. “A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning” Microelectronics, ICM 2008.
[57] H.-D. Zheng, O.-X. Yang, O.-J. Zeng, Li Zhang and Z.-P. Yu, “Design of a 24-GHz wide-tuning-range VCO with optimized switches in resonator”, IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2010.
[58] M. Törmänen and H. Sjöland, “A 24-GHz quadrature receiver front-end in 90-nm CMOS,” in Proc. IEEE Asia–Pacific Microw. Conf., Dec. 2009, pp. 1152–1155.
[59] J.-M. Yang, C.-Y. Kim, D.-W. Kim, and S.-C. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuits Syst. II, Exp. Briefs vol. 57, no. 3, Mar 2010
[60] S.-L. Jang, C.-J. Huang, C.-C. Liu, and C.-W. Hsue. “A 0.22 V quadrature VCO in 90-nm CMOS process,” IEEE Microw.Wireless Compon. Lett., vol. 9, no. 9, pp. Sep. 2009.
[61] C.-Y. Kim, J. Yang, D.-W. Kim, and S. Hong, “A K-band quadrature VCO based on asymmetric coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 363–366
[62] G.-C. Huang, and B.-S. Kim, “Low phase noise self-switched biasing CMOS LC quadrature VCO”, IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, Feb 2009
[63] S. Zhu, Y. You, D. Heo, J.-H. Kim and B.-S. Kim, “Current-reuse and gate-modulation techniques for sub-1 mW QVCO,” Electronics Letters, vol. 47 , issue: 9, pp.530-531
[64] N. Da Dalt, S. Derksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizer with 3-ps jitter in 0.18-μm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Devices Research Conf., Firenze, Italy, Sep. 2002, pp. 415–418.
[65] T.-N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620-625, Mar. 2008.
[66] J. Hu and B. Otis, “A 3-μW, 400-MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in IEEE RFIC Symp. Dig. Papers, pp. 665–668, 2008.
[67] U. Singh, and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38-GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658–1661, Aug. 2005.
[68] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[69] H. R. Rategh, and T.-H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[70] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide locking-range CMOS injection-locked frequency divider with transformer-feedback,” in IEEE RFIC Symp. Dig. Papers, 2008, pp. 435–438.
[71] M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “60 GHz CMOS divide-by-5 injection-locked frequency divider with an open-stub-loaded floating-source injector,” in IEEE RFIC Dig. Papers, 2011.
[72] Y.-H. Kuo, J.-H. Tsai, H.-Y.Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477–2485, Oct. 2011.
[73] “Sonnet User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[74] X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased-array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311–2320, Dec. 2004.
[75] D. Saunders1 et al., “A single-chip 24-GHz SiGe BiCMOS transceiver for FMCW automotive radars”, in IEEE RFIC Dig. Papers, 2009, pp. 459−462.
[76] T.-H. Lin and W. J. Kaiser, “A 900-MHz, 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[77] R. R.-B. Sheen, and O. T.-C Chen, “A CMOS PLL-based frequency synthesizer for wireless communication systems at 0.9, 1.8, 1.9 and 2.4-GHz,” 2001 IEEE International Symposium on Circuits and Systems Digest, vol. 4, pp. 722−725, 2000.
[78] Y. Sumi, and et al., “A new PLL frequency synthesizer using multi-programmable divider,” IEEE Transaction on Consumer Electrics, vol. 44, pp. 827−832, Aug. 1998.
[79] G.-Y. Tak, and et al., “A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications,” IEEE J. Solid-State Circuit, vol. 40, pp. 1671−1679, Aug. 2005.
[80] J. M. Ingino and V. R. von Kaenel, “A 4-GHz clock system for a high-performance system-on-a-chip design,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1693–1698, Nov. 2001.
[81] S. Steson, R.B. Brown, “A complementary GaAs PLL clock multiplier with wide-bandwidth and low-voltage operation,” 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Digest, pp. 317–320.
[82] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[83] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[84] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019−1022, Aug. 1990.
[85] S. Kim, et al, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691−700, May. 1997.
[86] H. Kondoh et al, “A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-frequency detector,” IEICE Trans. Electron, vol. E78-C, no. 4, pp. 381−388, Apr, 1995.
[87] B. Razavi, Design of Integration Circuits for Optical Communications, McGraw-Hill, 2003.
[88] H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1021−1027, Aug. 2002.
[89] B.-Y. Lin, K.-H. Tsai, and S.-I. Liu, “A 128.24-to-137.00 GHz injection-locked frequency divider in 65-nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 282–283.
[90] J. Jeong and Y. Kwon, “V-Band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1891–1898, Jun. 2011.
[91] T.-N. Luo, S.-Y. Bai, Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE trans. Microw. Theory Tech., vol.56, no.11, pp. 2409-2415, Nov. 2008.
[92] C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13-μm CMOS technology,” IEEE ASSCC, pp.344–347, Nov.2007.
[93] Y.-H. Kuo, J.-H. Tsai, W.-H. Chou, and T.-W. Huang, “Admittance-transforming injection-locked frequency divider and low-supply-voltage current mode logic divider,” Microwave Conference Proceedings (APMC), 2010 Asia-Pacific, pp. 782-785.
[94] P.-K Tsai, T.-H. Huang, Y.-H. Pang, “CMOS 40-GHz divide-by-5 injection-locked frequency divider”, Electronics Letters, vol. 46, issue 14, 2010.
[95] W. O. Keese, “An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops,” National Semiconductor Application Note, no. 1001, May 1996.
[96] 劉深淵,楊清淵, “鎖相迴路”, 民國97年2月.
[97] Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256–258, Apr. 2007.
[98] Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE trans. Microw. Theory Tech., vol. 55, no. 1, pp. 44-51, Nov. 2007.
[99] J. Lee, “High-speed circuit designs for transmitters in broadband data links,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1004–1015, May 2006.
[100] A. W. L. Ng, G. C. T. Leung, K.-C. Kwok, L. L. K. Leung, and H.-C. Luong, “A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1236–1244, Jun. 2006.
[101] J. Lee, S. Lee, H. Kim, and H. Yu, “A 28.5-to-32 GHz fast settling multichannel PLL synthesizer for 60-GHz WPAN radio,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, pp. 1234-1246, May 2008.
[102] Ng, A. W. L. et al., “A 1-V 24-GHz 17.5-mW PLL in 0.18-μm CMOS,” ISSCC 2005, pp. 158-159, Feb. 2005
[103] J. Lee and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May 2009.
[104] P.-K. Tsai, T.-H. Huang, “Integration of current-reused VCO and frequency tripler for 24-GHz low-power phase-locked loop applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 4, Apr. 2012.
[105] J.-H. Liang, Z.-Y. Zhou, J. H., Duncan G. Elliott, “A 6.0-13.5 GHz alias-locked loop frequency synthesizer in 130-nm CMOS,” IEEE Transactions on Circuits and Systems–I: Regular Papers, vol.60, no. 1, Jan. 2013.
[106] Kyujin Oh, Yanping Ding, and Kenneth K. O, “Merged clock data recovery and 24-GHz LO generation circuit for crystalless transcseiver” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, July 2011.
[107] Y.-H. Lin, J.-H. Tsai, Y.-H. Kuo, and T.-W. Huang, “An ultra-low-power 24-GHz phase-lock-loop with low phase-noise VCO embedded in 0.18-μm CMOS process,” Proceedings of the Asia-Pacific Microwave Conference 2011. pp. 1630-1633, Dec. 2011.
[108] M. Huang, C.-H. Yu, J.-H. Tsai, T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18-μm COMS technology”, Microwave Conference Proceedings (APMC), 2012 Asia-Pacific, pp. 643-645, Dec. 2012.
[109] O. Richard, A. Siligaris, F. Badets, C. Dehos, C. Dufis, P. Busson, P. Vincent, D. Belot, and P. Urard, “A 17.5-to-20.94 GHz and 35-to-41.88 GHz PLL in 65-nm CMOS for wireless HD applications,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 252-253. Feb. 2010,
[110] F. Herzel, S. A. Osmany, K. Schmalz, W. Winkler, J. C. Scheytt, T. Podrebersek, R. Follmann, and H.-V. Heyer, “An integrated 18 GHz fractional-N PLL in SiGe BiCMOS technology for satellite communications,” in Proc. IEEE RFIC Symp., Boston, MA, Jun. 2009, pp. 329–332.
[111] Xiaolei Gai, “A fully integrated low phase noise, fast locking, 31 to 34.9 GHz dual-loop PLL,”Microwave Conference (EuMC), pp. 1209-1212, Oct. 2011.
[112] Xiaolei Gai, “A 35 GHz dual-loop PLL with low phase noise and fast lock for millimeter wave applications,” Microwave Symposium Digest (MTT) 2011, pp.1-4, Jun. 2011.
[113] P.-K. Tsai, C.-Y. Liu, and T.-H. Huang, ‘‘A CMOS voltage-controlled oscillator and frequency tripler for 22−27 GHz local oscillator generation,’’ IEEE Microw. Wirel. Compon. Lett., vol. 21, no. 9, pp. 492−494, Sep. 2011.
[114] B.-Y. Lin, and S.-I. Liu, “A 132.6 GHz phase-locked loop in 65-nm digital CMOS”, IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 58, pp. 617−621, Oct. 2011.
[115] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with −104.5 dBc/Hz at 10-kHz offset using SiGe HBT ECL PFD,” in Proc. Asia Pacific Microwave Conf., Dec. 2009, pp. 373–376. |