參考文獻 |
[1]Y.-A. Li, M.-H. Hung, S.-J. Huang, and J. Lee, “A fully integrated 77GHz FMCW radar system in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 216-217.
[2]T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
[3]D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1606-1617, Jul. 2011.
[4]R. Appleby, and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proc. IEEE, vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[5]P. Chen, P. Peng, C. Kao, Y. Chen, and Jri Lee, “A 94GHz 3D Image Radar Engine with 4TX/4RX Beamforming Scan Technique in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 146-147.
[6]B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sept. 2004.
[7]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1380-1385, Oct. 1973.
[8]Q. Jane Gu, H.-Y. Jian, Z. Xu, Y.-C. Wu, M.-C. Frank Chang, Y. Baeyens and Y.-K. Chen, “200GHz CMOS prescalers with extended dividing range via time-interleaved dual injection locking,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2010, pp. 69-72.
[9]I.-T. Lee, C.-H. Wang, B.-Y. Lin and S.-I. Liu, “258.16-259.95 GHz injection-locked frequency divider,” Electron. Lett., vol. 46, no. 21, pp. 1438-1439, Oct. 2010.
[10]B.-Y. Lin, I-T. Lee, C.-H. Wang, and S.-I. Liu, “A 198.9GHz-to-201.0GHz injection-locked frequency divider in 65nm CMOS,” in Proc. IEEE Very Large Scale Integr. Circuits Symp. Dig., Jun. 2010, pp. 49-50.
[11]B.-Y. Lin, and S.-I. Liu, “A 113.92 ~ 118.08 GHz injection-locked frequency divider with triple-split-inductor technique,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 8, pp. 436-438, Aug. 2011.
[12]B.-Y. Lin, and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, June 2011.
[13]I-T. Lee and S.-I. Liu, “G-band injection-locked frequency dividers using π-type LC networks,” IEEE Trans. Circuits Syst. I, vol. 59, no. 2, pp. 315-323, Feb. 2012.
[14]S.-W. Chu and C.-K. Wang, “An 85-GHz injection-locked frequency divider with current-reuse pre-amplifier technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 89-92.
[15]J. Yin, and H. C. Luong, “A 0.8V 1.9mW 53.7-to-72.0GHz self-frequency-tracking injection-locked frequency divider,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 305-308.
[16]Y. Chao, and H. C. Luong, “A 2.9mW 53.4–79.4GHz frequency-tracking injection-locked frequency divider with 39.2% locking range in 65nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 337-340.
[17]W.-S. Chang, K.-W. Tan, and S. S. H. Hsu, “A 56.5–72.2 GHz transformer-injection miller frequency divider in 0.13 μm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 7, pp. 393-395, July 2010.
[18]K. Takatsu, H. Tamura, T. Yamamoto, Y. Doi, K. Kanda, T. Shibasaki and T. Kuroda, “A 60-GHz 1.65mW 25.9% locking range multi-order LC oscillator based injection locked frequency divider in 65nm CMOS,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2012, pp. 1-4.
[19]Wang, L. Zhang, D. Yang, D. Zeng, L. Zhang, Y. Wang, and Zh. Yu, “A 60GHz wideband injection-locked frequency divider with adaptive-phase-enhancing technique,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June 2011, pp. 1-4.
[20]Y.-T. Chen, M.-W. Li, T.-H. Huang, and Huey-Ru Chuang, “A V-Band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 7, pp. 396-398, July 2010.
[21]C. Zhou, L. Zhang, Z. Yu, and H. Qian, “A wide-locking range V-Band injection-locked frequency divider,” in IEEE Int. Conf. on Solid-State and Integr. Circuit Tech., Oct. 2012, pp. 1-4.
[22]A. Katz, O. Degani, and E. Socher, “Modeling and design of a low-power injection-locked frequency divider in 90nm CMOS for 60GHz applications,” in Proc. IEEE Silicon Monolithic Integr. Circuits RF Systs Dig., Jan. 2011, pp. 61-64.
[23]J. Yun, H. Kim, H. Seo, and J.-S. Rieh, “A 140 GHz single-ended injection locked frequency divider with inductive feedback in SiGe HBT technology,” in Proc. IEEE Silicon Monolithic Integr. Circuits RF Systs Dig., Jan. 2011, pp. 61-64.
[24]H. Wu and L. Zhang, “A 16-to-18GHz 0.18m Epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2006, pp. 2482–2491.
[25]C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66-72 GHz divide-by-3 injection-locked frequency divider in 0.13-μm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 344–347.
[26]T.-N. Luo, S.-Y. Bai, Y.-J. E. Chen, “A 60-GHz 0.13-m CMOS divide-by-three frequency divider,” IEEE trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[27]T.-N. Luo, S.-Y. Bai and Y.-J. E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electron. Lett., vol. 45, no. 1, pp. 57–59, Jan. 2009.
[28]T.-N. Luo, S.-Y. Bai, Y.-J. E. Chen, C.-L. Ko, C.-F. Chiu, and Y.-Z. Juang, “A 43 GHz 0.13m CMOS prescaler,” in IEEE Radio Wireless Symp. Tech. Dig., Jan. 2008, pp. 179–182.
[29]H. M. Cheema, X. P. Yu, R. Mahmoudi, P. T.M. v. Zeijl, and A. v. Roermund, “A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., May 2010, pp. 780–783.
[30]I-T. Lee, C.-H. Wang, and S.-I. Liu, “3.6mW D-band divide-by-3 injection-locked frequency dividers in 65nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 93-96.
[31]I.-T. Lee, C.-H. Wang and S.-I. Liu, “Current-reused divide-by-3 injection-locked frequency divider in 65 nm CMOS,” in Electron. Lett., vol. 47, no. 18, pp. 1029-1030, Sept. 2011.
[32]P.-H. Feng, and S.-I. Liu, “Divide-by-three injection-locked frequency dividers over 200 GHz in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 405-416, Feb. 2013.
[33]I.-T. Lee, C.-H. Wang, J.-R. Sha, Y.-Z. Juang and S.-I. Liu, “D-band divide-by-3 injection-locked frequency divider in 65 nm CMOS,” in Electron. Lett., vol. 48, no. 17, pp. 1041-1042, Aug. 2012.
[34]H. Seo, J. Yun and J.-S. Rieh, “SiGe 140 GHz ring-oscillator-based injection-locked frequency divider,” in Electron. Lett., vol. 48, no. 14, pp. 847-848, July 2012.
[35]H.-H. Hsieh, F.-L. Hsueh, C.-P. Jou, F. Kuo, S. Chen, T.-J. Yeh, K. K.-W. Tan, P.-Y. Wu, Y.-L. Lin, and M.-H. Tsai, “A V-band divide-by-three differential direct injection-locked frequency divider in 65-nm CMOS,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2010, pp. 1-4.
[36]H.-H. Hsieh, Y.-H. Liu, T.-J. Yeh, C.-P. Jou, and F.-L. Hsueh, “A V-Band Divide-by-Three Injection-Locked Frequency Divider in 28 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 11, pp. 592-594, Nov. 2012.
[37]H.-H. Hsieh, H.-S. Chen and L.-H. Lu, “A V-Band Divide-by-4 Direct Injection-Locked Frequency Divider in 0.18-μm CMOS,” IEEE trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[38]L. Wu, H. C. Luong, “A 0.6V 2.2mW 58-to-73GHz divide-by-4 injection-locked frequency divider,” in Proc. IEEE Custom Integr. Circuit Conf., Sept. 2012, pp. 1-4.
[39]I.-T. Lee, C.-H. Wang, C.-L. Ko, Y.-Z. Juang, and S.-I. Liu, “A 3.6 mW 125.7–131.9 GHz divide-by-4 injection-locked frequency divider in 90 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 3, pp. 132-134, Mar. 2012.
[40]M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[41]L. Wang, Y.-Z. Xiong, S.-M. Hu, and T.-G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 97-100.
[42]Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2010, pp. 776–779.
[43]C.-N. Kuo, and T.-C. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
[44]T.-C. Yan, H.-B. Lin, and C.-N. Kuo, “A V-band injection-locked frequency tripler module with adaptive free-running frequency tuning,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[45]G. Mangraviti, B. Parvais, V. Vidojkovic, K. Vaesen, V. Szortyka,, K. Khalaf, C. Soens, G. Vandersteen, and P. Wambacq,, “A 52–66GHz subharmonically injection-locked quadrature oscillator with 10GHz locking range in 40nm LP CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2012, pp. 309-312.
[46]E. Monaco, M. Pozzoni, F. Svelto, and A. Mazzanti, “Injection-locked CMOS frequency doublers for μ-wave and mm-wave applications,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, Aug. 2010.
[47]F.-H. Huang, C.-C. Chen, H.-Y. Chang, and Y.-M. Hsin, “A 60-GHz 2×2 phased-array transmitter using injection-locked oscillator in 0.18 µm CMOS technology,” in Proc. IEEE Asian-Pacific Micro. Conf., Dec. 2010, pp. 538-541.
[48]F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[49]S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[50]K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[51]K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: A possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.
[52]M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[53]W. K. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[54]S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Jun. 2008, pp. 131–134.
[55]Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[56]C.-C. Wang, Z. Chen, and P. Heydari, “W-band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[57]C. F. Liang and K.J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 90-92, Feb. 2011.
[58]B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, pp. 1391-1400, May 2009.
[59]I-T. Lee, Y.-J. Chen, S.-I. Liu, C.-P. Jou, F.-L. Hsueh, and H.-H. Hsieh, “A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing ” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 414-415, Feb. 2013.
[60]Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[61]J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[62]J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414–1426, June 2008.
[63]K.-H Tsai and S.-L Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 276–277.
[64]C. Lee and S. Luan Liu, “A 58-60.4GHz Frequency Synthesizer in 90nm CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 196-197.
[65]H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara and R. Fujimoto, “A 60-GHz Phase-Locked Loop with Inductor-less Prescaler in 90-nm CMOS”, in Proc. Eur. Solid-State Circuits Conf., Sept. 2007, pp. 427-475.
[66]K. Scheir1, G. Vandersteen, Y. Rolain,and P. Wambacq, “A 57-to-66GHz Quadrature PLL in 45nm Digital CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 494-495.
[67]C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz Clock Generator Using a Harmonic-Locked PD in 0.13um CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404–408, May 2008.
[68]K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. Symp. on VLSI Design, Automation and Test, Apr. 2008, pp. 113-116.
[69]H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop with a multimode LC-based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[70]S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13µm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2011, pp. 1-4.
[71]S. Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a Dual W- and D-Band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022,May 2011.
[72]K.-H. Tsai, and S.-I. Liu, "A 104-GHz phase-locked loop using a VCO at second pole frequency," IEEE Trans. Very Large Scale Integr. Syst., vol. 20, pp. 80-88, Jan. 2012.
[73]B.-Y. Lin, and S.-I. Liu, "A 132.6-GHz phase-locked loop in 65 nm digital CMOS", IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, pp. 617-621, Oct. 2011.
[74]T.-Y. Chang, C.-S. Wang and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 81-84.
[75]L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[76]A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C. P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[77]G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[78]Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C. F. Chang, “A 70-78 integrated CMOS frequency synthesizer for W-Band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206-3218, Dec. 2011.
[79]Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635-2649,Nov. 2011.
[80]T. Shima, J. Sato, K. Mizuno, and K. Takinami, “A 60 GHz CMOS PLL synthesizer using a wideband injection-locked frequency divider with fast calibration technique,” in Proc. IEEE Asia-Pacific Micro. Conf., Dec. 2011, pp. 1530-1533.
[81]T. Shima, K. Miyanaga, and K. Takinami, “A 60 GHz PLL synthesizer with an injection locked frequency divider using a fast VCO frequency calibration algorithm,” in Proc. IEEE Asia-Pacific Micro. Conf., Dec. 2011, pp. 1530-1533.
[82]M. Tabesh, J. Chen, C. Marcu, L. Kong, S. Kang, A. M. Niknejad, and E. Alon, “A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3018-3032,Dec. 2011.
[83]C.-Y. Wu, M.-C. Chen, and Y.-K. Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-μm CMOS for V-band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629–1636, July 2009.
[84]R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[85]Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-m CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[86]Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.55, no.1, pp.44-51, Jan. 2007.
[87]S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 m CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 10, pp. 659-661, Oct. 2009.
[88]P.-S. Weng and L.-H. Lu, “A 30 GHz CMOS frequency synthesizer for V-band applications,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 8, pp. 433-435, Aug. 2012.
[89]T.-H. Lin, and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” in IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[90]J.-O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, “Performance variations of a 66GHz static CML divider in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 2142–2151.
[91]D. Lim, J. Kim, J.-O. Plouchart, C. Cho, D. Kim, R. Trzcinski, and D. Boning, “Performance variability of a 90GHz static CML frequency divider in 65nm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 542–543.
[92]S. Kudszus, W. H. Haydl, M. Neumann, and M. Schlechtweg, “94/47-GHz regenerative frequency divider MMIC with low conversion loss” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1312-1317, Sept. 2000.
[93]M. Seo, M. Urteaga, A. Young, and M. Rodwell, “A 305–330+ GHz 2:1 Dynamic Frequency Divider Using InP HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 468-470, Aug. 2010.
[94]A. Rylyakov, L. Klapproth, B. Jagannathan, and G. Freeman, “100 GHz dynamic frequency divider in SiGe bipolar technology,” Electron. Lett., vol. 39, pp. 217-218, Jan. 2003.
[95]S. Kudszus, W. H. Haydl, M. Neumann, and M. Schlechtweg, “94/47-GHz regenerative frequency divider MMIC with low conversion loss” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1312-1317, Sept. 2000.
[96]J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[97]W.-Z. Chen and C.-L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 m CMOS technology,” in Proc. Eur. Soild-State Circuits Conf., Sep. 2002, pp. 89–92.
[98]X. P. Yu, M. A. Do, J.-G. Ma, W. M. Lim, K. S. Yeo, and X. L. Yan, “Sub-1 V low power wide range injection-locked frequency divider,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 7, pp. 528–530, Jul. 2007.
[99]K.-H. Tsai, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 466–467.
[100]Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
[101]D. Shim, C. Mao, S. Sankaran, and K. K. O, “150 GHz complementary anti-parallel diode frequency tripler in 130 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 43-45, Jan. 2011.
[102]T. Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 175 GHz HBV frequency quintupler with 60 mW output power,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 76-78, Feb. 2012.
[103]C. Mao, C. S. Nallani, S. Sankaran, E. Seok, and K. K. O, “125-GHz diode frequency doubler in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1531-1538, May 2009.
[104]Y. Lee, J. R. East, and L. P. B. Katehi, “High efficiency W-band GaAs monolithic frequency multipliers,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 529-535, Feb. 2004.
[105]G.-L. Tan and G. M. Rebeiz, “High-power millimeter-wave planar doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, vol. 3, pp. 1601-1604.
[106]U. R. Pferiffer, C.Mishra, R. M. Rassel, S. Pinkett, and S. K. Reynolds, “Schottky barrier diode circuits in silicon for future millimeter-wave and Terahertz applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 364-371, Feb. 2008.
[107]C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, June 2007.
[108]Y.-G. Kim, K. W. Kim, and Y.-K. Cho, “A planar ultra-wideband balanced doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1243-1246.
[109]R. Bitzer, “Planar broadband MIC balanced frequency doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., July 1991, vol. 1, pp. 273-276.
[110]S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1994, vol. 1, pp. 443-446.
[111]Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 25-75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, Apr. 2008.
[112]T. Kiuru, J. Mallat, A. V. Räisänen, and T. Närhi, “Compact broadband MMIC Schottky frequency tripler for 75–140 GHz”, in Proc. Eur. Micro. Integr. Circuits Conf., Oct. 2011, pp. 108-111.
[113]Y. Wang, W. L. Goh, Y.-Z. Xiong, “A 9% power efficiency 121-to-137GHz phase-controlled push-push frequency quadrupler in 0.13μm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2012, pp. 262-264.
[114]Y. Campos-Roca, C. Schwörer, A. Leuther, and M. Seelmann-Eggebert “G-band metamorphic HEMT-based frequency multiplier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2893–2992, Jul. 2006.
[115]A. Boudiaf, D. Bachelet, and C. Rumelhard, “A high-efficiency and low-phase-noise 38 GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000.
[116]J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H.Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[117]Y. Campos-Roca, L. Verweyen, M. Fernández-Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann, and M. Schlechtweg, “An optimized 25.5–76.5 GHz PHEMT-based coplanar frequency tripler,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 242–244, Jun. 2000
[118]N.-C. Kuo, Z.-M. Tsai, K. Schmalz, J. C. Scheytt, and H. Wang, “A 52-75 GHz frequency quadrupler in 0.25-µm SiGe BiCMOS process”, in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2010, pp. 365-368.
[119]E. Öjefors, B. Heinemann and U. R. Pfeiffer, “A 325 GHz Frequency Multiplier Chain in a SiGe HBT Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. May 2010, pp. 91-94.
[120]E. Öjefors, B. Heinemann, and U. R. Pfeiffer, “Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1311-1318, May 2011.
[121]J.-H. Chen, and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[122]K. Y. Lin, J. Y. Huang, and S. C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Mircow. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-310, May 2009.
[123]K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288-1295, Jun. 2005.
[124]N.-C. Kuo, J.-C. Kao, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 60-GHz frequency tripler with gain and dynamic-range enhancement,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 660-671, Mar. 2011.
[125]U. J. Lewark, A. Tessmann, H. Massler, S. Wagner, A. Leuther, and I. Kallfass, “300 GHz active frequency-tripler MMICs,” in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2011, pp. 236-339.
[126]B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-State Circuits, vol. 43, pp. 855-863, Apr. 2008.
[127]F.-R. Liao and S.-S. Lu, "A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 946-950, Dec. 2010.
[128]A. E. Siegman, Lasers. Mill Valley, CA: University Science Books, 1986.
[129]B. Mesgarzadeh, M. Hansson, and A. Alvandpour, “Jitter Characteristic in Charge Recovery Resonant Clock Distribution,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1618-1625, Jul. 2007.
[130]C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[131]C.-C. Chen, H.-W. Tsao, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3060–3069, Dec. 2009.
[132]B.-Y. Lin, K.-H. Tsai, and S.-I. Liu, “A 128.24-to-137.00GHz injection-locked frequency divider in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 282–283.
[133]B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Hill, 2001, ch. 2.
[134]A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[135]“Sonnet User’s Guide,” 12th ed. Sonnet Software, Inc., North Syracuse, NY, 2009.
[136]I. A. Young, J. K. Greason, and K. L. Wong, “A PLL clock generator with 5 to 110 MHz of lock range for microprocessors ,” IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1599-1607, Nov. 1992.
[137]H. Kondoh, H. Notani, T. Yoshimura, H. Shibata, and Y. Matsuda, “A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-detector,” IEICE Trans. Electron., vol. E78-C, no. 4, pp. 381-388, Apr. 1995.
[138]T.-N. Luo, Y.-J. E. Chen, “A 0.8-mW 55-GHz Dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620-625, Mar. 2008.
[139]X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 895-902, May 1992.
[140]F. Giannini and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley & Sons, Ltd, England, 2004.
[141]S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injectionlocked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, Jun. 2003.
[142]C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int Microw. Symp. Dig., June 2009, pp. 1293–1296.
[143]Y.-L. Yeh, and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 06, pp. 1617-1625, Jun. 2012.
[144]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998, ch. 7.
[145]F. Tzeng, P. Pi, A. Safarian, and P. Heydari, “Theoretical analysis of novel multi-order LC oscillators,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 54, no. 3, pp. 287–291, Mar. 2007.
[146]L.-C. Cho, C. Lee, and S.-I. Liu, “A 1.2-V 37-38-GHz eight-phase clock generator in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, pp. 1261-1270, Jun. 2007.
[147]C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[148]A. Pottbacker, U. Langmann, and H.-U. Schreiber “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[149]X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009. |