博碩士論文 983204001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.189.22.136
姓名 呂承澤(Cheng-Tse Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電遷移誘發錫原子逆迴流通量與錫自身電遷移通量 於陰極銅/錫界面原子通量交互關係之研究
(Study of interaction between electromigration-induced Sn back-filled atomic fluxes and Sn EM flux on EM-induced failure modes at Sn/Cu joint interface)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今微電子構裝系統中,為容納更高密度的I/O(Input/Output)數目在高階IC晶片上,覆晶接點(flip-chip bumps)尺寸將大幅縮小至50 μm以下。如此,每個覆晶接點所承受的電流密度將會高達104 A/cm2或更高,進而造成電遷移效應誘發失效行為(electromigration-induced failure),此失效行為將嚴重IC晶片內覆晶接點之可靠度。因此,在此碩士論文中,於第三章,我們先利用一個基本的覆晶式銅/錫/銅銲點結構去探討錫原子逆迴流通量(JSn,back-filled)存在的成因以及銅箔消耗陰極介金屬消耗的演進過程,另外,我們也利用一特殊的T字形結構,設計出一嶄新的方式計算銅原子在銅錫介金屬中的有效碰撞係數(effective charge number, Z*Cu/Cu6Sn5)。 在第四章中,得到這些參數後,我們可以定量出電遷移誘發錫在錫的電遷移原子通量(JSn,EM)和錫原子逆迴流通量(JSn,back-filled.)。一旦,得到以上兩個錫原子通量,我們可以修改學長的陰極界面電遷移失效行為圖,於錫孔洞形成的區域,再增加此二通量的影響,去定義出嶄新的陰極界面電遷移失效行為圖。將(JSn,EM)和(JSn,back-filled.).做相等可以取得固定電流密度下的臨界溫度值(Tcrit.),再利用這些臨界溫度值去修改出陰極銅/錫界面電遷移誘發失效圖。 最後,我們建構出更可靠與正確的陰極界面電遷移失效行為圖。
摘要(英) Due to the number of the I/O (input/outout) counts in the advanced IC will continue to increase quickly; the diameter of flip-chip bumps will approach to 50 μm and below. The current density in each flip-chip bumps could reach 104 Amp/cm2 or higher. While the high density of current flowing through the flip-chip solder bumps, EM (electromigration)-induced failure has become a serious reliability issues for the solder joint. Hence, in this work, we will first propose a innovated concept of Sn back-filled phenomenon, and we will use this Sn back-filled flux (JSn,back-filled). Also, a new method of calculating Z* value of Cu in Cu6Sn5 has been proposed in Chapter 3. In Chapter 4, the entire EM-induced failure modes at the cathode Cu/Sn solder joint interface would be discussed in a great detail. In Chapter 4, we will introduce how to calculate the Sn back-filled flux (JSn,back-filled), and the Sn EM flux (JSn,EM). By knowing this two Sn back-filled flux (JSn,back-filled) and the Sn EM flux (JSn,EM), we can
modify the failure map constructed by Hua Wei. By equaling the JSn,back-filled and the JSn,EM, we can obtain the a critical temperature (Tcrit.) at a constant current density. Then, we can use various critical temperatures to plot a EM-induced failure map at the cathode Cu/Sn interface under EM effect. Finally, based on the concept of Sn back-filled flux and Sn EM flux, we can construct a more reliable and accurate plot of the EM failure behavior at the cathode Cu/Sn interface.
關鍵字(中) ★ 焊料
★ 電遷移
★ 電子封裝
★ 失效地圖
關鍵字(英) ★ solder
★ electromigration
★ electronic packaging
★ failure-map
論文目次 Table of contents
誌謝…………………………………………………………………………………I
中文摘要 II
Abstract III
Table of contents IV
Table of figures VI
Chapter 1 Introduction 1
1.1 Flip-chip technology 1
1.1-1 Introduction of flip-chip technology 1
1.1-2 Pb-free solders 3
1.2 Basic of electromigration in solder joints 5
1.3 EM-induced failures at flip-chip cathode solder joints 6
1.3-1 EM-caused Sn-voids formation at cathode IMCs/solder interface 7
1.3-2 EM-induced dissolution of the Cu metal bond pad or the Cu trace lines 7
1.4 Two possible driving forces for the EM-induced Cu-pad dissolution 8
Chapter 2 Motivation 10
Chapter 3 Mechanism of Sn back-filled phenomenon at Cu/Sn/Cu joint interface 12
3.1 Sn back-filled phenomenon at Cu/Sn/Cu joint interface 12
3.1-1 Experimental procedures 12
3.1-2 Experimental results 14
3.1-3 Mechanism of Sn back-filled phenomenon 16
3.2 New method for calculating the effective charge number Z* value of Cu atoms in the Cu6Sn5 compound 19
3.2 The effective charge number Z* value of Cu atoms in the Cu6Sn5 compound 3.2-1 Experimental procedures 19
3.2-2 Experimental results 21
3.2-3 Calculate the effective charge number Z* value of Cu atoms in the Cu6Sn5 compound 26
Chapter 4 Constructing EM failure behavior map at the cathode Cu/Sn interface 31
4.1 EM-induced Cu EM flux and Sn back-filled flux at the cathode Cu/Sn interface 31
31
4.2 References selected for constructing EM-induced failure map at the cathode Cu/Sn interface 40
4.3 Calculating Sn back-filled flux (JSn,back-filled) at the cathode Cu/Sn interface 45
4.4 Constructing modified EM failure behavior map at the cathode Cu/Sn interface 50
Chapter 5 Conclusion 56
Reference 57
Appendix (A): Cross-interaction study of Cu/Sn/Pd and Ni/Sn/Pd sandwich
solder joint structures………………………………………………………………61
參考文獻 [1] A. Rahn (ed.), in The Basics of Soldering (John Wiely & Sons, New York, 1993).
[2] L. F. Miller, Proc. 31st IEEE Electron. Comp. Conf. (New York: IEEE, 1968), pp.52–56.
[3] V. C. Marcotte and N. G. Koopman, Proc. 31st IEEE Electron. Comp. Conf. (New York: IEEE, 1981), p. 157–162.
[4] S. J. Wang and C.Y. Liu, Journal of electronic materials, 32, 1303, (2003)
[5] C. E. Ho, S. C. Yang, C. R. Kao, J Mater Sci: Mater Electron, 18, 155, (2007).
[6] K. Zeng, K. N. Tu, Mater. Sci. Eng. R, 38, 55 (2002).
[7] J. Cannis, Green IC packaging, Adv. Packag., 8, 33, (2001).
[8] K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic thin film science: for electrical engineers and materials scientists, (Prentice Hall, 1992), pp.355-368.
[9] D. Edenfeld, A. B. Kahng, M. Rodgers, Y. Zorian, International Technology Roadmap for Semiconductor, Semiconductor Industry Association, San Jose, CA, (2003).
[10] Y. H. Lin and C. R. Kao, J. Electron. Mater. 34, 27, (2005).
[11] S. Brandenburg and S. Yeh, Surface Mount International Conference and Exposition, SMI 98 Proceedings (1998), p. 337.
[12] W. J. Choi, E. C. C. Yeh, K. N. Tu, J. Appl. Phys., 94, 5665, (2003).
[13] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544, (2003).
[14] “Lead-Free Solder Project Final Report”, NCMS Report 0401RE96, Ann Arbor, MI, August (1997).
[15] B. P. Richards, C. L. Levoguer, C. P. Hunt, K. Nimmo, S. Peters, and P. Cusack, “An Analysis of The Current Status of Lead-Free Soldering”, British Department of Trade and Industry Report, April (1999).
[16] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, Jin Yu, and W. K. Choi, JOM, 56, 34, (2004).
[17] H. K. Kim and K. N. Tu, Phys. Rev. B, 53, 16027, (1996).
[18] 1. K. N. Tu, Solder joint technology: materials, properties, and reliability (Springer Science, Business Media, New York, (2007).
[19] Y. C. Chan and D. Yang, Prog. Mater. Sci., 55, 428 (2010).
[20] K. Zeng and K. N. Tu, Mater. Sci. Eng. R, 38, 55 (2002).
[21] M. H. R. Jen, L. C. Liu, and Y. S. Lai, Microelectron. Reliab., 49, 734 (2009).
[22] H. W. Tseng, C. T. Lu, Y. H. Hsiao, P. L. Liao, Y. C. Chuang, T. Y. Chung, and
[23] C. Y. Liu, Microelectron Reliab., 50, 1159 (2010).
[24] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[25] M. Ding, G. T. Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, J. Appl. Phys., 99, 094906 (2006).
[26] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, Acta. Mater., 55, 2805 (2007).
[27] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J.Wang, J. Appl. Phys., 100, 083702 (2006).
[28] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544 (2003).
[29] C. T. Lin, Y. C. Chuang, S. J. Wang, and C. Y. Liu, Appl. Phys. Lett., 89, 101906
(2006).
[30] D.Ma, W. D. Wang, and S. K. Lahiri, J. Appl. Phys., 91, 3312 (2002).
[31] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[32] 曾華偉, “電遷移誘發錫/銅界面(錫,銅)原子通量之交互關係及其對錫/銅銲點電遷移失效機制影響研究”, 國立中央大學 化學工程與材料工程所, 博士論文, (2011).
[33] Y. C. Hu, Y.H. Lin, C.R. Kao, J. Mater. Res. 18, No. 11(2003).
[34] C. Y. Liu, J. T. Chen, Y. C. Chuang, L. Ke, S. J. Wang, Appl. Phys. Lett. 90,
112114 (2007).
[35] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J.Wang, J. Appl. Phys., 100, 083702 (2006).
[36] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[37] S. Ou and K. N. Tu, IEEE. Proc. ECTC 55th., 2, 1445 (2005).
[38] Z. Mei, A. J. Sunwoo, and J. W. Morris Jr., Metall. Trans. A, 23A, 857 (1992).
[39] 莊曜群, “銅覆晶墊層銲點界面之電遷移失效模式研究”, 國立中央大學 化學工程與材料工程所, 博士論文, (2008).
[40] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys., 100, 083702, (2006).
[41] C. T. Lin, Y. C. Chuang, S. J. Wang, and C. Y. Liu, Appl. Phys. Lett., 89, 101906, (2006).
[42] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544, (2003).
[43] M. Ding, G. Wang, B. Chao, P. S. Ho, P. Su, T. Uehling, J. Appl. Phys., 99, 094906, (2006).
[44] H. W. Tseng, Y. T. Yeh, K. Y. Lin, and C. Y. Liu, Electrochem. Solid State Lett., 12, H445, (2009).
[45] J. H. Lee and Y. B. Park, J. Electron. Mater., 38, 2194, (2009).
[46] Y. H. Hsiao, H. W. Tseng, and C. Y. Liu, J. Electron. Mater., 38, 2573, (2009).
[47] Y. Alfred, E. Bernd, L. Charles, Microelectron. Reliab., 48, 1847, (2008).
[48] L. Xu, J. K. Han, J. J. Liang, K. N. Tu, Y. S. Lai, Appl. Phys. Lett., 92, 262104, (2008).
[49] W. H. Wu, H. L. Chung, C. N. Chen, C. E. Ho, J. Electron. Mater., 38, 2563, (2009).
[50] 廖珮嵐, “Cu-Sn-Cu覆晶結構之陰極銅箔消耗與電遷移失效模式”, 國立中央大學 化學工程與材料工程所, 碩士論文, (2007).
[51] Y. C. Chan and D. Yang, Prog. Mater. Sci., 55, 428, (2010).
[52] C. Y. Liu, Chih Chen, K. N. Tu, J. Appl. Phys., 88, 5703, (2000).
[53] Khosla A, Huntington HB. J Phys Chem Solids, 36,395, (1975).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2013-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明