博碩士論文 992209005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.136.154.103
姓名 黃瀞誼(Jing-yi Huang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 VUV/EUV對類冥王星冰晶之光化作用研究
相關論文
★ 冰晶光脫附率量測★ 鋅原子在3d游離閾下光吸收絕對截面測量
★ 16K下H2O+CO2+NH3混合冰晶的光脫附反應之傅氏紅外光譜★ H2O+ CO2+ NH3 混合冰晶的光脫附質譜分析
★ 純水、純水加二氧化碳及純水加氨三種不同 冰晶在氫氣微波放電管光源照射下的總離 子脫附率★ 鎂原子與氫分子在量子干涉效應下的光譜量測
★ 鎂蒸氣中光速的變異★ UV/EUV光子對星際冰晶的光化作用
★ 氦狹窄共振線的光譜分析和鹼土族原子在直流電場下的反應★ 極性分子與非極性分子對含CH4混合冰晶光化作用之影響
★ N2 + CH4 + H2O 混合冰晶在氫氣微波放電光源照射下的光化產物★ H2S+CO與H2S+CO2混合冰晶光化作用下含硫分子之生成機制
★ H2O 冰晶光子作用之溫度效應研究★ 嘧啶混合冰晶之光化作用研究
★ CO2冰晶光脫附之溫度效應研究★ X射線與電子能量作用下星際冰晶的化學衍化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近數十年來天文物理學家致力研究海王星外天體(TNOs)之古柏帶天體(KBOs),欲了解來自太陽系早期的衍化過程與尋找相關證據。太空觀測發現KBOs表面不同顏色與性質的差異反映了與距太陽遠近而造成的溫度差異,進而去分析KBOs與太陽系衍化的關係。本論文選擇冥王星做為探討有關KBOs表面的相關衍化機制,有別於先前使用高能粒子來模擬冥王星冰晶的實驗研究,我們選用真空紫外光源(VUV)與極致紫外光源(EUV)來探討不同能量的光子對類冥王星冰晶的光化作用機制之影響。
真空紫外光源部分使用微波氫氣放電管,而極致紫外光源使用同步輻射研究中心(NSRRC) High Flux 光束線所提供之同步輻射光,並使用N2:CH4: CO (10:1:1)混合冰晶作為類冥王星的表面冰晶,利用不同能量分布的光源來探討光子能量對類冥王星冰晶之光化作用的影響。同時搭配紅外線光譜儀及四極質譜儀來分析光化產物的產量與生成機制。研究結果發現在VUV與EUV光子作用下皆能產生CO2、HCO、H2CO與CH3CHO等含碳氧鍵結的光化產物,和CH2N2與HCN等含碳氮鍵結的光化產物。然而只有在EUV光子作用下才能觀測到N3、CN-、HNCO與OCN-等光化產物生成。
本論文所觀測到的含碳氧鍵結之光化產物的生成量皆非常微小,分別為混合冰晶中CO分子總量的千分之一至六的量。這或許可以說明現今在冥王星表面上為何較難看到這些產物的吸收特徵。特別是在光源Ly-α 比例約高達80 %的條件下,CO2與HCO的生成量相對的較少,而H2CO與CH3CHO的生成量並沒有隨光源條件的不同而有太大的差異。此外,本實驗可以明顯的區分CH2N2與HCN含碳氮鍵結的光化產物的吸收特徵,且在VUV光子作用下,CH2N2的光化產量隨CH4被光解的消耗量愈多而愈多,HCN的生成經由CH2N2與CH2自由基交互作用生成的效率遠大於CH2N2結構重新排列。在EUV光子作用下,HCN可經由CH與N的結合而形成,然而在EUV光子作用下N原子較傾向反應生成CN鍵結的產物,如HNCO與OCN-,因此在EUV光子照射條件下CH2N2與HCN的總產量相對於VUV小了許多。
在本實驗的回溫過程中OCN-的熱脫附行為與Moore和Hudson在2001年、黃柏渝於2010年的實驗結果一致,更證實我們有OCN-的生成物產生。此外回溫的紅外光譜顯示不論是VUV或是EUV光子作用皆有許多新的吸收訊號產生,可提供未來天文觀測結果如:2015年的新視界號 (New Horizon),或往後相關的大分子模擬實驗研究一個參考的依據。
摘要(英) To understand the evolutionary process from the early solar system and find its relevant evidences, astrophysicists have been dedicated to investigating Kuiper Belt Objects (KBOs) of Trans-Neptunian Objects (TNOs) in recent decades. Through astronomical observation, some astrophysicists discovered that the surfaces of KBOs have different colors and properties. Temperature differences might be caused by its distance from the sun; thus, further analysis of the evolution between KBOs and solar system is required. In this research, we choose Pluto to investigate the relevant photochemical mechanism on surfaces of KBOs. Unlike previous studies in using the high energy particles as the energy sources, we use vacuum ultra-violet (VUV) and extreme ultra-violet (EUV) as two different light sources to discuss the effect of photon energies on photolysis of Pluto.
We used (1) a microwave discharged hydrogen-flow lamp (MDHL) as the VUV light source, and (2) the High Flux beamline at National Synchrotron Radiation Research Center (NSRRC) as the EUV light source. We chose N2:CH4:CO (10:1:1) ice mixtures as the simulated surface material of Pluto, and used different energy distributions of light sources for studying the photolysis on it. Fourier Transform Infrared spectroscopy (FTIR) and Quadrupole Mass Spectrometry (QMS) were employed to analyze the formation mechanism and production yield of the products simultaneously. The results showed that the C-O bearing photoproducts as CO2, HCO, H2CO and CH3CHO and N-C bearing photoproducts such as CH2N2 and HCN could be detected under both VUV and EUV irradiation. However, photoproducts of N3, HNCO and OCN- were only observed in EUV irradiation experiment.
Based on this study, the column density of C-O bearing photoproducts (CO2, H2CO and CH3CHO) are only 0.1-0.6 % compared to that of CO molecules. This might suggest why these absorption spectral features in Pluto are hardly to be found. Especially under the light condition containing about 80% Ly-α photon, the production quantities of CO2 and HCO are relatively less. However, the production quantities of H2CO and CH3CHO are not much different under different irradiation light conditions. In addition, we could distinguish clearly the N-C bearing photoproducts between CH2N2 and HCN. Under the VUV irradiation, the production quantities of CH2N2 are directly correlated to the consumption of CH4 while the production quantities of HCN are produced easily by the interaction of CH2N2 with CH2 radicals rather through than the CH2N2 decomposition. Under the EUV irradiation, HCN could be produced by the combination of CH and N. The N atoms tend to produce the molecules with CN bearing, such as HNCO with OCN- in EUV irradiation; therefore, the production quantities of HCN and CH2N2 are much less in EUV irradiation.
In this study, the process of OCN- thermal desorption is in agreement with those reported in Moore and Hudson (2001) and Po-yu Huang (2010) and it supports that OCN- is produced in photolysis. As shown in IR spectra of warm-up process, some complex molecules can be in the substrate identified after either VUV or EUV irradiations. This study could be important for coming astronomical exploration in the future, such as the New Horizon spacecraft in 2015 or provide worthwhile reference for the formation study of complex molecules in laboratory experiments.
關鍵字(中) ★ 氮氣
★ 甲烷
★ 一氧化碳
★ 冥王星
★ 光化作用
★ 紅外光譜
★ 真空紫外光
★ 極致紫外光
★ 四極質譜儀
★ 新視野號
關鍵字(英) ★ Nitrogen
★ Methane
★ Carbon monoxide
★ Pluto
★ Photolysis
★ infrared spectrum
★ VUV
★ EUV
★ QMS
★ New Horizon
論文目次 中文摘要 i
英文摘要 iii
誌謝 v
第一章 緒論……………………………………………………………………1
1-1 前言……………………………………………………………… 1
1-2 海王星外天體(Trans-Neptunian Objects, TNOs) ……………… 2
1-2-1 古柏帶的預測與發現…………………………………… 3
1-2-2 古柏帶天體的表面特性………………………………… 3
1-3 冥王星(Pluto) …………………………………………………… 4
1-3-1 冥王星之相關觀測資料………………………………… 5
1-3-2 冥王星之相關實驗研究文獻探討…………………… 10
第二章 模擬實驗原理、架設及實驗方法……………………………………11
2-1 冰晶演化機制………………………………………………… 11
2-1-1 能量的來源…………………………………………… 11
2-1-2 光化作用(Photolysis) ………………………………… 14
2-2 紅外光譜 (The Infrared Spectroscopy) ……………………… 15
2-2-1 紅外光譜的吸收特徵……………………………………15
2-2-2 分子之震動模式 (Vibrational Modes) …………………15
2-2-3 比爾定律 (Beer’s Law) ……………………………… 17
2-3 傅立葉紅外線光譜儀
(Fourier Transform Infrared Spectroscopy, FTIR)…………… 18
2-3-1 麥克森干涉儀 (Michelson interferometer)…………… 18
2-3-2 傅立葉轉換 (Fourier Transform)
─將干涉圖譜轉換為紅外光譜圖……………………… 19
2-3-3 紅外線光譜儀之偵測器MCT
(Mercury Cadmium Telluride) ………………………… 22
2-4 四極質譜儀 (Quadrupole Mass Spectrometer, QMS)………… 23
2-5 模擬太空環境………………………………………………… 25
2-5-1 超高真空系統 (Ultra-High Vacuum System)………… 25
2-5-2 低溫冷凍系統 (Cryostat System)……………………… 27
2-6 氣體預混系統 (Gas Pre-mixing System)………………………28
2-7 真空紫外光源 (Vacuum Ultra-Violet, VUV)………………… 29
2-7-1 微波氫氣放電管(Hydrogen Microwave Discharge gas
flowing Lamp, HMDL)………………………………… 30
2-7-2 同步輻射光源(Synchrotron Radiation Source)………… 33
2-8 實驗方法及步驟……………………………………………… 36
2-8-1 前置作業與降溫…………………………………………36
2-8-2 預混氣體與長冰過程……………………………………37
2-8-3 照光過程…………………………………………………38
2-8-4 回溫過程…………………………………………………38
第三章 實驗結果分析與討論………………………………………………39
3-1實驗之參數條件…………………………………………………39
3-2 N2:CH4: CO (10:1:1)混和冰晶之紅外光譜圖…………………40
3-3 VUV光子能量照射下N2:CH4: CO (10:1:1)混和冰晶之光化產物
……………………………………………………………………41
3-4 VUV光子能量對N2:CH4: CO (10:1:1)混和冰晶光化速率之影響
……………………………………………………………………44
3-4-1 VUV光子照射下混和冰晶上元素的消耗量……………44
3-4-2 VUV光子照射下之光化產物的光化行為與生成速率…52
3-5 EUV光子能量照射下N2:CH4: CO (10:1:1)混和冰晶之光化產物
……………………………………………………………………61
3-6 EUV光子能量對N2:CH4: CO (10:1:1)混和冰晶光化速率之影響
……………………………………………………………………64
3-7 回溫過程的熱脫附現象………………………………………72
3-7-1 VUV光化作用下光化產物回溫過程的熱脫附現象…72
3-7-2 EUV光化作用下光化產物回溫過程的熱脫附現象…74
第四章 總結…………………………………………………………………76
4-1 VUV與EUV光子對N2:CH4: CO (10:1:1)混和冰晶之光消耗比
較…………………………………………………………………76
4-2 VUV與EUV光子對N2:CH4: CO (10:1:1)混和冰晶之光化產物
比較………………………………………………………………76
4-2-1以相同的光化產物來看…………………………………77
4-2-2 以不同的光化產物來看…………………………………80
4-3 VUV與VUV光子對N2:CH4: CO (10:1:1)混和冰晶之回溫比較…
……………………………………………………………………80
4-4實驗結果在天文物理上之運用…………………………………82
參考文獻 ……………………………………………………………………84
參考文獻 [1] 陳俞融 (2007)。國立中央大學物理系博士論文。
[2] 許永村 (1991)。冥王星。科學月刊全文資料庫,257期。http://210.60.224.4/ct/content/1991/00050257/0004.htm
[3] Stern, S. A. (2002). Scientific American, 5.
http://sa.ylib.com/MagCont.aspx?PageIdx=1&Unit=featurearticles&Cate=&id=78&year=
[4] Astronomical News of NCU Web page:
http://www.astro.ncu.edu.tw/outreach/news/070216b.html
[5] Jewitt, D. (1999), Kuiper Belt Objects, Annu. Rev. Earth Planet. Sci., 27, 287.
[6] Spacetech’s Orrery Web page:
http://www.harmsy.freeuk.com/oort.html
[7] Astronomy Picture of the Day Index - Main Page of NASA Web page:
http://apod.nasa.gov/apod/ap970204.html
[8] Edgeworth, K. E., 1914, The origin and evolution of the Solar System. MNRAS. 109, 600-609.
[9] Kuiper, G. P., 1951. On the origin of the solar system, in Astrophysics, A Topical Symposium, Ed. J. A. Hynek (McGraw-Hill Book Co., Inc., New York), pp. 357-424.
[10] Christy, J. W., Harrington, R. S., 1978. The satellite of Pluto. AJ 83, 1005-1008.
[11] Grundy, W. M., Noll, K. S., Nimmo, F. H., Roe, G., Buie, M. W. et al., 2011, Five new and three improved mutual orbits of transneptunian binaries. Icarus 203, 678-692.
[12] Moore, M. H., Donn, B., Khanna, R. K., A’Hearn, M. F., 1983. Studies of proton-irradiated cometary-type ice mixtures. Icarus 54, 388–405.
[13] Strazzulla, G., Baratta, G. A., Johnson, R. E., Donn, B., 1991. Primordial comet mantle: Irradiation production of a stable organic crust. Icarus 91, 101-104.
[14] Baratta, G. A., Brunetto, R., Leto, G., Palumbo, M. E., Spinella, F., Strazzulla, G., 2004. Ion irradiation of ices relevant to astrophysics. Mem. S.A.It. Suppl. 5, 33-36.
[15] NASA Web page:
http://solarsystem.nasa.gov/multimedia/display.cfm?IM_ID=1504
[16] NASA Web page:
http://www.nasa.gov/mission_pages/hubble/science/pluto-20100204.html
[17] NASA Web page:
http://hubblesite.org/newscenter/archive/releases/2010/06/image/h/
[18] Dumas, C., Terrile, R. J., Brown, R. H., Schneider, G., Smith, B. A., 2001. Hubble Space Telescope NICMOS Spectroscopy Of Charon’s Leading And Trailing Hemispheres. ApJ 121:1163-1170.
[19] Search Results of NASA Web page:
http://nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html
[20] Search Results of NASA Web page:
http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html
[21] Southwest Research Institute (SwRI) News:
http://www.swri.org/9what/releases/2011/pluto.htm
[22] VLT Instruments of European Southern Observatory:
http://www.eso.org/public/teles-instr/vlt/vlt-instr.html
http://www.eso.org/sci/facilities/develop/ao.html
[23] Protopapa, S., Herbst, T., Bohnhardt, H., 2007. Surface Ice Spectroscopy of Pluto, Charon and Triton. ApJ 129, 58-61.
[24] Stern, S. A., Cunningham, N. J., Hain, M. J., Spencer, J. R., Shinn, A., 2012. First Ultraviolet Reflectance Spectra of Pluto and Charon by the Hubble Space Telescope Cosmic Origins Spectrograph: Detection of Absorption Features and Evidence for Temporal Change. ApJ 143, 22-25.
[25] Moore, M.H., Hudson, R. L., 2003. Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161, 486-500.
[26] NASA’s Pluto-Kuiper Belt Mission Web page:
http://www.nasa.gov/mission_pages/newhorizons/main/index.html
[27] NASA Web page:
http://pluto.jhuapl.edu/index.php
[28] R. B. Bohn, S. A. Sandford, L. J. Allamandola, D. P. Cruikshank, “Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons”, Icarus 111, 151-173 (1994).
[29] Kim, Y. S., Kaiser, R. I., 2012. Electron Irradiation of Kuiper Belt Surface Ices: Ternary N2-CH4-CO Mixtures as a Case Study. ApJ 758: 37-42.
[30] Draine, Bruce T., 2011. Physics of the Interstellar and Intergalactic Medium, Princeton, 9-10.
[31] Leger, A., Klein, J., de Cheveigne, S., Guinet, C., Defourneau, D., & Belin, M. 1979, A&A, 79, 256–259.
[32] Clayden, J., Warren, S., et al. , 2000. Organic Chemistry, Oxford University Press, 182-184.
[33] Cosmicopia’s page on cosmic rays of NASA Web page:
http://helios.gsfc.nasa.gov/qa_cr.html#em
[34] Goddard space flight center of NASA Web page:
http://imagine.gsfc.nasa.gov/docs/science/know_l1/cosmic_rays.html
[35] Hudson, R.L., Palumbo, M. E., Strazzulla, G., Moore, M. H., Cooper, J. F., Sturner, S.J., 2008. Laboratory Studies of the Chemistry of Transneptunian Object Surface Materials, University of Arizona Press, Tucson, 507-523.
[36] Westley, M. S., Baragiola, R. A., Johnson, R. E., Baratta., G. A..1995. Planet. Space Sci. 43, 1311.
[37] Dupree, A. K., Reeves, E. M., 1971. ApJ 165, 599-613.
[38] Y.-J. Chen, C.-C.Chu, Y.-C.Lin, T.-S.Yih, C. Y. R. Wu, D. L. Judge,2010. VUV Photolysis of Pure CO Ices: A Study of Spectral Bandwidth Dependence, Advances in Geoscience. Planetary Science 25, 259-273.
[39] 同步輻射網站http://www.srrc.gov.tw。
[40] Bernstein, M. P., Sandford, S. A., 1999. Variations in the strength of the infrared forbidden 2328.2 cm-1 fundamental of solid N2 in binary mixtures. Elsevier, Spectrochimica Acta Part A 55, 2455-2466.
[41] Gerakines, P. A., Moore, M. H., 2001. Carbon Suboxide in Astrophysical Ice Analogs. Icarus 154, 372-280.
[42] C. Romanzin, M.-C. Gazeau, Y. Be’ nilan, E. He’ brard, A. Jolly, F. Raulin, S. Boye’-Pe’ ronne, S. Douin, D. Gauyacq, 2005. Methane photochemistry: A brief review in the frame of a new experimental program of Titan’s atmosphere simulations. Advances in Space Research 36, 258-267.
[43] Y. J. Wu, C. Y. Robert Wu, S. L. Chou, M. Y. Lin, H. C. Lu, J. I. Lo, B. M. Cheng, 2012. Spectra and Photolysis of Pure Nitrogen and Methane Dispersed in Solid Nitrogen with Vacuum-Ultraviolet Light. ApJ 746, 175-186.
[44] Bennett, C. J., Hama, T., Kim, Y. S., Kawasaki, Masahiro, Kaiser, R. I., 2011. Laboratory Studies on the Formation of Formic Acid (HCOOH) in Interstellar and Cometary Ices. ApJ 727, 27-42.
[45] Muñoz Caro, G. M., Jiménez-Escobar, A., Martín-Gago, J. Á., Rogero, C., Atienza, C., Puertas, S., Sobrado, J. M., Torres-Redondo, J. Affiliation, 2010. New results on thermal and photodesorption of CO ice using the novel Inter Stellar Astrochemistry Chamber (ISAC). A&A 522, A108.
[46] Y. J. Chen, C. C. Chu, Y. C. Lin, T. S. Yih, C. Y. R. Wu, D. L. Judge, 2010. VUV Photolysis of Pure CO Ices: A Study of Spectral Bandwidth Dependence, Advances in Geoscience. Planetary Science 25, 259-273.
[47] öberg, K. I., Fuchs, G. W., Awad, Z., Fraser, H. J., Schlemmer, S., van Dishoeck, E. F., Linnartz, H.,2007. Photo desorption of CO ice. ApJ 662, L23-L26.
[48] H. C. Lu, H. K. Chen, B. M. Cheng, Y. P. Kuo, Ogilvie, J. F., 2005. Spectra in the vacuum ultraviolet region of CO in gaseous and solid phases and dispersed in solid argon at 10 K. J. Phys. B: At. Mol. Opt. Phys. 38, 3693-3704.
[49] Bennett, C. J., Jamieson, C. S., Osamura, Y., Kaiser, R. I., 2005. A combined experimental and computational investigation on the Synthesis of acetaldehyde [CH3CHO(X 1A0)] in interstellar ices. ApJ 624, 1097-1115.
[50] 黃柏渝 (2010)。國立中央大學物理系碩士論文。
[51] Hudson, R. L., Moore, M. H., Gerakines, P. A., 2001. The Formation of Cyanate Ion (OCN–) in Interstellar Ice Analogs. ApJ 550, 1140-1150.
[52] Vladimir A. Krasnopolsky, 1999. Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. Journal of Geophysical Research 104, 979-996.
指導教授 易台生 審核日期 2013-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明