參考文獻 |
[1] V. K. Mahajan, M. Misra, K. S. Raja, S. K. Mohapatra, “Self-organized TiO2 Nanotubular Arrays for Photoelectro- chemical Hydrogen Generation: Effect of Crystallization and Defect Structures,” J. Phys. Chem. 41, 125307 (2007).
[2] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, “Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2,” Angew. Chem. Int. Ed. 47, 1766-1769 (2008).
[3] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett. 8, 3781-3786 (2008).
[4] Y. Lin, G. S. Wu, X. Y. Yuan, T. Xie, L. D. Zhang, “Fabrication and Optical Properties of TiO2 Nanowire Arrays Made by Sol–gel Electrophoresis Deposition into Anodic Alumina Membranes,” J. Phys.: Condens. Matter 15, 2917–2922 (2003).
[5] B. Liu, E. S. Aydil, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[6] J. J. Wu, C. C. Yu, “Aligned TiO2 Nanorods and Nanowalls,” J. Phys. Chem. B 108, 3377-3379 (2004).
[7] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, “Smooth Anodic TiO2 Nanotubes,” Angew. Chem. Int. Ed. 44, 7463-7465 (2005).
[8] J. M. Macák, H. Tsuchiya, P. Schmuki, “High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium,” Angew. Chem. Int. Ed. 44, 2100 -2102 (2005).
[9] E. Formo, E. Lee, D. Campbell, Y. Xia, “Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications,” Nano Lett. 8, 668-672 (2008).
[10] I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers,” Nano Lett. 6, 2009-2013 (2006).
[11] Y. Zhang, P. Xiao, X. Zhou, D. Liu, B. B. Garcia, G. Cao, “Carbon Monoxide Annealed TiO2 Nanotube Array Electrodes for Efficient Biosensor Applications,” J. Mater. Chem. 19, 948-953 (2009).
[12] K. S. Mun, S. D. Aluaez, W. Y. Choi, M. J. Sailor, “A Stable, Label-free Optical Interferometric Biosensor Based on TiO2 Nanotube Arrays,” ACS Nano 4, 2070-2076 (2010).
[13] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Lett. 6, 215-218 (2006).
[14] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, “Dye-sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization,” Phys . Chem. Chem. Phys. 7, 4157-4163 (2005).
[15] S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, “Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow- through Photocatalytic Applications,” Nano Lett. 7, 1286-1289 (2007).
[16] Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, “Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays,” Environ. Sci. Technol. 42, 8547-8551 (2008).
[17] N. K. Allam, K. Shankar, C. A. Grimes, “Photoelectrochemical and Water Photoelectrolysis Properties of Ordered TiO2 Nanotubes Fabricated by Ti Anodization in Fluoride-free HCl Electrolytes,” J. Mater. Chem. 18, 2341-2348 (2008).
[18] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 ím in Length,” J. Phys. Chem. B 110, 16179-16184 (2006).
[19] K. S. Brammer, S. Oh, J. O. Gallagher, S. Jin, “Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces,” Nano Lett. 8, 786-793 (2008).
[20] M. Y. Lan, C. P. Liu, H. H. Huang, J. K. Chang, S. W. Lee, “Diameter- sensitive Biocompatibility of Anodic TiO2 Nanotubes Treated with Supercritical CO2 Fluid,” Nanoscale Res. Lett. 8, 150-157 (2013).
[21] S. Liu, A. Chen, “Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing,” Langmuir 21, 8409-8413 (2005).
[22] M. Zlamal, J. M. Macak, P. Schmuki, J. Krýsa, Electrochemically Assisted Photocatalysis on Self-organized TiO2 Nanotubes,” Electrochem. Commun. 9, 2822-2826 (2007).
[23] S. K. Mohapatra, K. S. Raja, V. K. Mahajan, M. Misra, “Efficient Photoelectrolysis of Water using TiO2 Nanotube Arrays by Minimizing Recombination Losses with Organic Additives,” J. Phys. Chem. C 112, 11007-11012 (2008).
[24] C. A. Grimes, “Synthesis and Application of Highly Ordered Arrays of TiO2 Nanotubes,” J. Mater. Chem. 17, 1451-1457 (2007).
[25] T. S. Kang, A. P. Smith, B. E. Taylor, M. F. Durstock, “Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells,” Nano Lett. 9, 601-606 (2009).
[26] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array,” Langmuir 12, 1411-1413(1996).
[27] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, “Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications,” Chem. Mater. 20, 756-767 (2008).
[28] X. H. Li, W. M. Liu, H. L. Li, “Template Synthesis of Well-aligned Titanium Dioxide Nanotubes,” Appl. Phys. A 80, 317-320 (2005).
[29] M, Zhang, Y. Bando, K. Wada, “Sol-gel Template Preparation of TiO2 Nanotubes and Nanorods,” J. Mater. Sci. Lett. 20, 167-170 (2001).
[30] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Adv. Mater. 11, 1307-1311 (1999).
[31] C. C. Tsai, H. Teng, “Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment,” Chem. Mater. 16, 4352-4358 (2004).
[32] M. Miyauchi, H. Tokudome, “Super-hydrophilic and Transparent Thin Films of TiO2 Nanotube Arrays by a Hydrothermal Reaction,” J. Mater. Chem. 17, 2095–2100 (2007).
[33] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, “The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes,” J. Mater. Chem. 14, 3370-3377 (2004).
[34] K. S. Raja, M. Misra, K. Paramguru, “Formation of Self-ordered Nano-tubular Structure of Anodic Oxide Layer on Titanium,” Electrochim. Acta 51, 154-165 (2005).
[35] A. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki, “Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes,” Electrochem. Commun. 7, 505-509 (2005).
[36] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, “TiO2 Nanotubes: Self-organized Electrochemical Formation, Properties and Applications,” Curr. Opin. Solid St. M. 11, 3-18 (2007).
[37] B. G. Lee, J. W. Choi, S. E. Lee, Y. S. Jeong, H. J. Oh, C. S. Chi, “Formation Behavior of anodic Tio2 Nanotubes in fluoride Containing Electrolytes,” Trans. Nonferrous Met. Soc. China 19, 842-845 (2009).
[38] H. H. Ou, S. L. Lo, “Review of Titania Nanotubes Synthesized via The Hydrothermal Treatment: Fabrication, Modification, and Application,” Sep. Purif. Technol. 58, 179-191 (2007).
[39] H. Shin, D. K. Jeong, J. Lee, M. M. Sung, J. Kim, “Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness,” Adv. Mater. 16, 1197-1200 (2004).
[40] J. Park, Y. Ryu, H. Kim, C. Yu, “Simple and Fast Annealing Synthesis of Titanium Dioxide Nanostructures and Morphology Transformation During Annealing Processes,” Nanotechnology 20, 105608 (2009).
[41] M. A. Khan, H. T. Jung, O. B. Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes,” J. Phys. Chem. B 110, 6626-6630 (2006).
[42] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir 14, 3160-3163 (1998).
[43] D. Gong, C. A. Grimes, O. K. Varghese, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” J. Mater. Res. 16, 3331-3334 (2001).
[44] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, “Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy,” Surf. Interface Anal. 27, 629-637 (1999).
[45] P. Roy, S. Berger, P. Schmuki, “TiO2 Nanotubes: Synthesis and Applications,” Angew. Chem. Int. Ed. 50, 2904-2939 (2011).
[46] T. Tian, X. Xiao, R. Liu, H. She, X. Hu, “Study on Titania Nanotube Arrays Prepared by Titanium Anodization in NH4F/H2SO4 Solution,” J. Mater. Sci. 42, 5539-5543 (2007).
[47] J. H. Yun, Y, H. Ng, C. Ye, A. J. Mozer, G. G. Wallace, R. Amal, “Sodium Fluoride-Assisted Modulation of Anodized TiO2 Nanotube for Dye-Sensitized Solar Cells Application,” ACS Appl. Mater. Interfaces 3, 1585–1593 (2011).
[48] K. Das, A. Bandyopadhyay, S. Bose, “Biocompatibility and In Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry,” J. Am. Ceram. Soc. 91, 2808-2814 (2008).
[49] M. Ninomi, “Recent Metallic Materials for Biomedical Applications,” Metall. Mater. Trans. A 33, 477-486 (2002).
[50] A. W. Tan, B. Pingguan-Murphy, R. Ahmad, S. A. Akbar, “Review of Titania Nanotubes: Fabrication and Cellular Response,” Ceram. Int. 38, 4421-4435 (2012).
[51] S. G. Steinemann, “Titanium - the Material of Choice?,” Periodontology 2000 17, 7-21(1998).
[52] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, “Titanium in Medicine,” Springer, Berlin, 231-266 (2001).
[53] X. Liu, P. K. Chu, C. Ding, “Surface Modification of titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Mat. Sci .Eng. R 47, 49-121 (2004).
[54] C. Yao, E. B. Slamovich, T. J. Webster, “Enhanced Osteoblast Functions on Anodized Titanium with Nanotube-like Structures,” J. Biomed. Mater. Res. A 85,157-166 (2008).
[55] S. Oh, C. Daraio, L. H. Chen, T. R. Pisanic, R. R. Fiñones, S. Jin, “Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes,” J. Biomed. Mater. Res. A 78,97-103 (2006).
[56] S. Oh, S. Jin, “Titanium Oxide Nanotubes with Controlled Morphology for Enhanced Bone Growth,” Mat. Sci. Eng. C 26,1301-1306 (2006).
[57] J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. van der Mark, P. Schmuki, “TiO2 Nanotube Surfaces: 15 nm—An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation,” Small 5, 666-671 (2009).
[58] K. Burns, C. Yao, T. J. Webster, “Increased Chondrocyte Adhesion on Nanotubular Anodized Titanium,” J. Biomed. Mater. Res. A 88, 561-568 (2009).
[59] K. S. Brammer, S. Oh, C. J. Frandsen, S. Varghese, S. Jin, “Nanotube Surface Triggers Increased Chondrocyte Extracellular Matrix Production,” Mat. Sci. Eng. C 30, 518-525 (2010).
[60] L. Peng, M. L. Eltgroth, T. J. LaTempa, C. A. Grimes, T. A. Desai, “The Effect of TiO2 Nanotubes on Endothelial Function and Smooth Muscle Proliferation,” Biomaterials 30, 1268-1272 (2009).
[61] J. Park, S. Bauer, P. Schmuki, K. von der Mark, “Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces,” Nano Lett. 9, 3157-3164 (2009).
[62] L. Peng, A. J. Barczak, R. A. Barbeau, Y. Xiao, T. J. LaTempa, C. A. Grimes, T. A. Desai, “Whole Genome Expression Analysis Reveals Differential Effects of TiO2 Nanotubes on Vascular Cells,” Nano Lett. 10, 143-148 (2010).
[63] B. S. Smith, S. Yoriya, T. Johnson, K. C. Popat, “Dermal Fibroblast and Epidermal Keratinocyte Functionality on Titania Nanotube Arrays,” Acta Biomater. 7, 2686-2696 (2011).
[64] S. Oh, K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, S. Chien, S. Jin, “Stem Cell Fate Dictated Solely by Altered Nanotube Dimension,” PANS 106, 2130-2135 (2009).
[65] S. Bauer, J. Park, K. von der Mark, P. Schmuki, “Improved Attachment of Mesenchymal Stem Cells on Super-Hydrophobic TiO2 Nanotubes,” Acta Biomater. 4, 1576-1582 (2008).
[66] K. Webb, V. Hlady, P. A. Tresco, “Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization,” J. Biomed. Mater. Res. 41, 422-430 (1998).
[67] M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, A. S. G. Curtis, “Fibroblast Reaction to Island Topography: Changes in Cytoskeleton and Morphology with Time,” Biomaterials 24, 927-935 (2003).
[68] H. G. Craighead, C. D. James, A. M. P. Turner, “Current Issues and Advances in Dissociated Cell Culturing on Nano- and Microfabricated Substrates,” Curr. Opin. Solid St. M. 5, 177-184 (2001).
[69] J. P. Spatz, “Cell-Nanostructure Interactions,” Nanobiotechnology; Wiley-VCH Verlag: Weinheim, Germany, 53-65 (2004).
[70] V. Wagner, A. Dullaart, A. K. Bock, A. Zweck, “The Emerging Nanomedicine Landscape,” Nat. Biotechnol. 24,1211-1217 (2006).
[71] H. Tsuchiya, J. M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen, P. Schmuki, “Hydroxyapatite Growth on Anodic TiO2 Nanotubes,” J. Biomed. Mater. Res. A 77, 534-541 (2006).
[72] M. F. Maitz, M. T. Pham, E. Wieser, “Blood Compatibility of Titanium Oxides with Various Crystal Structure and Element Doping,” J. Biomater. Appl. 17, 303-319 (2003).
[73] R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films,” J. Phys. Chem. B 105, 1984-1990 (2001).
[74] K. Gulati, S. Ramakrishnan, M. S. Aw, G. J. Atkins, D. M. Findlay, D. Losic, “Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion,” Acta Biomater. 8, 449-456 (2012).
[75] K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar, B. L. Gibbins, “Surface Coatings for Improvement of Bone Cell Materials and Antimicrobial Activities of Ti Implants,” J. Biomed. Mater. Res. B 87, 455-460 (2008).
[76] Y. Fukushima, H.Wakayama, “Nanoscale Casting Using Supercritical Fluid,” J. Chem. Phys. B. 103, 3062-3064 (1999).
[77] B. Xie, C. C. Finstad, A. J. Muscat, “Removal of Copper from Silicon Surfaces Using Hexafluoroacetylacetone (hfacH) Dissolved in Supercritical Carbon Dioxide,” Chem. Mater. 17, 1753-1764 (2005).
[78] K. M. Dooley, C. P. Kao, R. P. Gambrell, F. C. Knopf, “The Use of Entrainers in the Supercritical Extraction of Soils Contaminated with Hazardous Organics,“ Ind. Eng. Chem. Res. 26, 2058-2062 (1987).
[79] C. Y. Chen, J. K. Chng, W. T. Tsai, C. H. Hung, “Uniform Dispersion of Pd Nanoparticles on Carbon Nanostructures Using a Supercritical Fluid Deposition Technique and Their Catalytic Performance Towards Hydrogen Spillover,” J. Mater. Chem. 21, 19063 (2011).
[80] A. G. Kontos, A. I. Kontos, D. S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, “Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology,” Nanotechnology 20, 045603 (2009).
[81] W. R. Fahrner, “Nanotechnology and Nanoelectronics Materials, Devices,” Measurement Techniques, Springer, New York (2005).
[82] J. B. Heller, J. S. Gabbay, A. Trussler, M. M. Heller, J. P. Bradley, “Repair of Large Nasal Septal Perforations Using Facial Artery Musculomucosal (FAMM) Flap,” Ann. Plast. Surg. 55, 456-459 (2005).
[83] L. Persutti, M. A. Ciufelli, D. Marchioni, D. Villari, A. Marchetti, F. Mattioli, “Nasal septal perforation: our surgical technique,” Otolaryng Head. Neck. 136, 369-372 (2007).
[84] J. R. Coleman, E. B. Strong, “Management of Nasal Septal Perforation,” Curr. Opin. Otolaryngol. Head. Neck. Surg. 8, 58-62 (2000).
[85] H. Tschernitschek, L. Borchers, W. Geurtsen, “Nonalloyed titanium as a bioinert metal- A Review,” Quintessence Int. 36, 523-530 (2005).
[86] J. Ganele, A. Zöllner, J. Jackowski, C. ten Bruggenkate, J. Beagle, F. Guerra, “Immediate and Early Loading of Straumann Implants with a Chemically Modified Surface (SLActive) in the Posterior Mandible and Maxilla: 1-year Results from a Prospective Multicenter Study,” Clin. Oral Implants Res. 19, 1119-1128 (2008).
[87] N. Yamamichi, T. Itose, R. Neiva, H. L. Wang, “Long-term Evaluation of Implant Survival in Augmented Sinuses: A Case Series,” Int. J. Periodont. Rest. 28, 163-169 (2008).
[88] O. Zinger, K. Anselme, A. Dnezer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, D. Landolt, “Time-dependent Morphology and Adhesion of Osteoblastic Cells on Titanium Model Surfaces Featuring Scale-resolved Topography,” Biomaterials 25, 2695-2711 (2004).
[89] W. E. Yang, H. H. Huang, “Improving the Biocompatibility of Titanium Surface Through Formation of a TiO2 Nano-mesh Layer,” Thin Solid Films 518, 7545-7550 (2010).
[90] J. Park, S. Bauer, K. von der Mark, P. Schmuki, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate,” Nano Lett. 7, 1686-1691 (2007).
[91] Z. Su, W. Zhou, “Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides,” Adv. Mater. 20, 3663-3667 (2008).
[92] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, “TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/- Catalytic Performance,” Chem. Mater. 21, 1198-1206 (2009).
[93] C. W. Lai, S. Sreekantan, “Photoelectrochemical Performance of Smooth TiO2 Nanotube Arrays: Effect of Anodization Temperature and Cleaning Methods. Int. J. Photoenergy 2012, 356943 (2012).
[94] K. Das, S. Bose, A. Bandyopadhyay, “Surface Modifications and Cell-Materials Interactions with Anodized Ti,” Acta Biomater. 3, 573-585 (2007).
[95] R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” Ind .Eng. Chem. 28, 988-994 (1936).
[96] A. B. D. Cassie, S. Baxter, “Wettability of Porous Surfaces,” Trans. Farad. Soc. 40, 546–551 (1944).
[97] M. D. Petters, A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, P. J. Ziemann, “Chemical Aging and the Hydrophobic-to-Hydrophilic Conversion of Carbonaceous Aerosol,” Geophys. Res. Let. 33, L24806 (2006).
[98] K. Hashimoto, H. Irie, A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys. 44, 8269-8285 (2005).
[99] V. Collins-Martínez, A. L. Ortiz, A. A. Elguézabal, “Influence of the anatase/rutile ratio on the TiO2 photocatalytic activity for the photodegradation of light hydrocarbons” Int. J. Chem. React. Eng. 5, A92 (2007).
[100] L. Lauchlan, S. P. Chen, S. Etemad, M. Kletter, A. J. Heeger, A. G. MacDiarmid, “Absolute Raman Scattering Cross Sections of Trans-(CH)x,” Phys. Rev. B 27, 2301–2307 (1983).
[101] K. Kalyanasundaram, J. K. Thomas, “On The Conformational State of Surfactants in the Solid State and in Micellar Form, A laser-excited Raman scattering study,” J. Phys. Chem. 80, 1462-1473 (1976).
[102] D. D. Schlaepfer, C. R. Hauck, D. J. Sieg, “Signaling Through Focal Adhesion Kinase,” Prog. Biophys. Mol. Bio. 71, 435-478 (1999).
[103] C. Y. Flores, C. Diaz, A. Rubert, G. A. Benítez, M. S. Moreno, M. A. F. L. de Mele, R. C. Salvarezza, P. L. Schilardi, C. Vericat, “Spontaneous Adsorption of Silver Nanoparticles on Ti/TiO2 Surfaces. Antibacterial Effect On Pseudomonas Aeruginosa,” J. Colloid. Interf. Sci. 350, 402-408 (2010).
[104] K. D. O. Boahene. Synthetic Implants. In: Papel ID JT, editor. “Facial Plastic and Reconstructive Surgery,” New York, NY: Thieme, 67-75 (2009).
[105] B. Gibbins, L.Warne, “The Role of Antimicrobial Silver Nano- technology,” Med. Device. Diagn. Ind. 8, 2-5 (2005).
[106] K. Chaloupka, Y. Malam, A. M. Seifalian, “Nanosilver as a New Generation of Nanoproduct in Biomedical Applications,” Biotechnol. 28, 580-588 (2010).
[107] M. Y. Lan, C. P. Liu, H. H. Huang, J. K. Chang, S. W. Lee, “Diameter-sensitive Biocompatibility of Anodic TiO2 Nanotubes Treated with Supercritical CO2 Fluid,” Nanoscale Res. Lett. 8, 150 (2013).
[108] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A. Tryk, A. V. Emeline, T. Murakami, A. Fujishima, “Light-stimulated Composition Conversion in TiO2-based Nanofibers,” J. Phys. Chem. C 111, 658-665 (2007).
[109] E. Körner, M. H. Aguirre, G. Fortunato, A. Ritter, J. Rühe, D. Hegemann, “Formation and Distribution of Silver Nanoparticles in a Functional Plasma Polymer Matrix and Related Ag+ Release Properties,” Plasma Process. Polym. 7, 619-625 (2010).
[110] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, “Silver Nanoparticles: Partial Oxidation and Antibacterial Activities,” J. Biol. Inorg. Chem. 12, 527-534 (2007).
[111] S. H. Uhm, D. H. Song, J. S. Kwon, S. B. Lee, J. G. Han, K. M. Kim, K. N. Kim, “E-beam Fabrication of Antibacterial Silver Nanoparticles on Diameter-controlled TiO2 Nanotubes for Bio-implants,” Surf. Coat. Tech. , doi:10.1016/j.surfcoat.2012.05.102 (2012).
[112] R. Kumar, H. Münstedt, “Silver Ion Release from Antimicrobial Polyamide/Silver Composites,” Biomaterials 26, 2081-2088 (2005).
[113] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P. K. Chu, “Antibacterial Nano-structured Titania Coating Incorporated with Silver Nanoparticles,” Biomaterials 32, 5706-5716 (2011).
[114] F. Meng, Z. Sun, “A Mechanism for Enhanced Hydrophilicity of Silver Nanoparticles Modified TiO2 Thin Films Deposited by RF Magnetron Sputtering,” Appl. Surf. Sci. 255, 6715-6720 (2009).
[115] D. W. Hatchett, H. S. White, “Electrochemistry of Sulfur Adlayers on The Low-index Daces of Silver,” J. Phys. Chem. 100, 9854-9859 (1996).
[116] T. Vitanov, A. Popov, “Adsorption of SO42− on Growth Steps of (111) and (100) Faces of Silver Single Crystals,” J. Electroanal. Chem. 159, 437-441 (1983).
[117] I. Sondi, B. Salopek-Sondi, “Silver Nanoparticles as Antimicrobial Agent a Case Study on E. coli as a Model for Gram-negative Bacteria,” J. Colloid Interf. Sci. 275, 177–182 (2004).
[118] Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, “Mode of Bactericidal Action of Silver Zeolite and its Comparison with That of Silver Nitrate,” Appl. Environ. Microbiol. 69, 4278-4281 (2003).
[119] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, “A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus,” J. Biomed. Mater. Res. 52, 662–668 (2000).
[120] H. J. Park, J. Y. Kim, J. Kim, J. H. Lee, J. S. Hahn, M. B. Gu, J. Yoon, “Silver-ion-mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity,” Water Res. 43, 1027-1032 (2009).
[121] J. Takagi, B. M. Petre, T. Walz, T. A. Springer, “Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-in and Inside-out Signaling,” Cell 110, 599-511 (2002).
[122] K. M. Woo, V. J. Chen, P. X. Ma, “Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment,” J. Biomed.Mater. Res. A 67, 531-537 (2003).
[123] H. Notsu, W. Kubo, I. Shitanda, T. Tatsuma, “Super-hydrophobic/ Super-hydrophilic Patterning of Gold Surfaces by Photocatalytic Lithography,” J. Mater. Chem. 15, 1523-1527 (2005).
[124] J. Bico. U. Thiele, D. Quéré, “Wetting of Textured Surfaces,” Colloid. Surface A 206, 41-46 (2002).
[125] H. Hiramatsu, F. E. Osterloh, “A Simple Large-scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16, 2509-2511 (2004). |