博碩士論文 100329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.217.26.216
姓名 劉家珮(Chia-pei Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 表面改質對二氧化鈦奈米管的生物相容性與抗菌性影響之研究
(The Influence of Surface Modification on Biocompatibility and Antibacterial Activity of Titanium Oxide Nanotubes)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在組織植入技術領域中,隨著奈米尺度的生物材料逐漸受到重視,材料表面之組織相容性及細胞的生存與否,都深受材料表面形貌、粗糙度,及表面化學修飾的影響。本論文第一部分主要探討超臨界流體(ScCO2)清潔與紫外線光照(UV-irradiation)處理對於陽極氧化二氧化鈦(TiO2)奈米管表面性質的影響, 以及人體纖維組織母細胞(Human fibroblast cell) 在不同管徑之TiO2奈米管上之生物相容性。實驗結果顯示,經ScCO2清潔後,因材料表面之C-H鍵結的產生,TiO2奈米管的接觸角大幅上升。接著,將試片施以UV光照8小時,可藉由C-H鍵的分解而明顯改善材料表面之親水性; 且隨著管徑的下降,親水性的效果越好。此光誘發之親水性TiO2奈米管對於人體纖維母細胞具有良好的的生物相容性,且人體纖維母細胞的吸附及成長皆與奈米管徑大小具有高的相依性。在本論文的第二部分將探討銀奈米粒子在不同管徑之TiO2奈米管上的抗菌效果。實驗結果顯示, 在TiO2奈米管上的銀奈米粒子藉由銀離子的釋放可以成功地抑制葡萄球菌生長, 並改變其生長形貌, 進而大幅減少菌落的產生。此外, 細胞培養實驗顯示, 鍍有銀奈米粒子的TiO2奈米管除了有顯著的抗菌活性外, 同時也具有良好的生物相容性。總結以上所述, 利用超臨界流體清潔與銀奈米粒子的沉積可以有效地對植入性生醫材料進行表面修飾處理, 進而提供良好的生物相容性及抗菌環境。
摘要(英) In the field of tissue implant technology, the surface morphology, roughness, and surface chemical modification of the bio-inert materials play important roles in the compatibility of tissues and the survival of cells. This study investigated the biocompatibility of human fibroblast cells on anodic TiO2 nanotubes after supercritical-CO2-fluid (ScCO2) cleaning processes and the antibacterial efficiency of the Ag-decorated TiO2 nanotubes with Staphylococcus aureus. Self-organized vertically-orientated TiO2 nanotubes with defined diameters between 15 and 100 nm were fabricated on Ti foils using anodic oxidation processes. We found that ScCO2-treated TiO2 nanotubes can effectively recover their surface wettability under UV-light irradiation as a result of photo-oxidation of C-H functional groups formed on the surface. Besides, experimental results showed that this photo-induced hydrophilic TiO2 nanotubes exhibit high biocompatibility of human fibroblast cells critically dependent on the tube diameter. Furthermore, the Ag-decorated TiO2 nanotubes fabricated in this study successfully inhibit the growth of bacteria by the release of silver ions, and simultaneously being suitable for the cell growth of fibroblast. This study demonstrates that the use of ScCO2 fluid and Ag-deposition can be the promising approaches for surface treatments or modifications of bio-implants.
關鍵字(中) ★ 陽極氧化
★ TiO2奈米管
★ 超臨界流體
★ 生物相容性
★ 抗菌活性
關鍵字(英) ★ Anodization
★ TiO2 nanotubes
★ Supercritical fluid
★ Biocompatibility
★ Antibacterial activity
論文目次 Related Publication І
Abstract П
Acknowledgement VIV
Contents VI
List of Figures IX
List of Tables XIV
Chapter 1 Introduction 1
1.1 Application of Titanium Dioxide Nanotubes 1
1.2 The Fabrication Methods of Titanium Nanotubes 2
1.2.1 Template-Assisted Method 3
1.2.2 Hydrothermal treatment 6
1.2.3 Anodization 8
1.3 Biomedical Applications of Titanium Nanotubes 11
1.4 The Influence of Surface Modification of Titanium Nanotubes on the Biocompatibility 14
Chapter 2 Experimental Methods 15
2.1 Preparation of TiO2 nanotubes 15
2.2 The cleaning process by using the supercritical carbon dioxide 16
2.3 Ultraviolet (UV) illumination treatments 17
2.4 Deposition of silver particles 17
2.5 Silver ion release test 18
2.6 Human fibroblast cell culture 19
2.7 Cell adhesion assay 19
2.8 Scanning electronic microscopy (SEM) 21
2.9 Cell proliferation assay 21
2.10 Protein adsorption 22
2.11 Antibacterial test 23
2.12 Antiadhesive test 24
2.13 Statistical analysis 25
Chapter 3 Diameter-sensitive Biocompatibility of Anodic TiO2 Nanotubes Treated with Supercritical CO2 Fluid 26
3.1 Motivation 26
3.2 Results and Discussions 28
3.2.1 Materials Characterizations 28
3.2.2 Cell adhesion assay 38
3.2.3 Cell proliferation assay 41
3.3 Conclusions 43
Chapter 4 Both Enhanced Biocompatibility and Antibacterial Activity in Ag-decorated TiO2 Nanotubes 44
4.1 Motivation 44
4.2 Results and Discussions 45
4.2.1 Materials Characterizations 45
4.2.2 Silver ion release 51
4.2.3 Antibacterial test 53
4.2.4 Cell adhesion assay 57
4.2.5 Cell proliferation assay 61
4.2.6 Cell proliferation assay 62
3.3 Conclusions 65
Chapter 5 Future Work 66
References 69
參考文獻 [1] V. K. Mahajan, M. Misra, K. S. Raja, S. K. Mohapatra, “Self-organized TiO2 Nanotubular Arrays for Photoelectro- chemical Hydrogen Generation: Effect of Crystallization and Defect Structures,” J. Phys. Chem. 41, 125307 (2007).
[2] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, “Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2,” Angew. Chem. Int. Ed. 47, 1766-1769 (2008).
[3] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett. 8, 3781-3786 (2008).
[4] Y. Lin, G. S. Wu, X. Y. Yuan, T. Xie, L. D. Zhang, “Fabrication and Optical Properties of TiO2 Nanowire Arrays Made by Sol–gel Electrophoresis Deposition into Anodic Alumina Membranes,” J. Phys.: Condens. Matter 15, 2917–2922 (2003).
[5] B. Liu, E. S. Aydil, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells,” J. Am. Chem. Soc. 131, 3985–3990 (2009).
[6] J. J. Wu, C. C. Yu, “Aligned TiO2 Nanorods and Nanowalls,” J. Phys. Chem. B 108, 3377-3379 (2004).
[7] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, “Smooth Anodic TiO2 Nanotubes,” Angew. Chem. Int. Ed. 44, 7463-7465 (2005).
[8] J. M. Macák, H. Tsuchiya, P. Schmuki, “High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium,” Angew. Chem. Int. Ed. 44, 2100 -2102 (2005).
[9] E. Formo, E. Lee, D. Campbell, Y. Xia, “Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications,” Nano Lett. 8, 668-672 (2008).
[10] I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers,” Nano Lett. 6, 2009-2013 (2006).
[11] Y. Zhang, P. Xiao, X. Zhou, D. Liu, B. B. Garcia, G. Cao, “Carbon Monoxide Annealed TiO2 Nanotube Array Electrodes for Efficient Biosensor Applications,” J. Mater. Chem. 19, 948-953 (2009).
[12] K. S. Mun, S. D. Aluaez, W. Y. Choi, M. J. Sailor, “A Stable, Label-free Optical Interferometric Biosensor Based on TiO2 Nanotube Arrays,” ACS Nano 4, 2070-2076 (2010).
[13] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Lett. 6, 215-218 (2006).
[14] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, “Dye-sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization,” Phys . Chem. Chem. Phys. 7, 4157-4163 (2005).
[15] S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, “Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow- through Photocatalytic Applications,” Nano Lett. 7, 1286-1289 (2007).
[16] Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, “Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays,” Environ. Sci. Technol. 42, 8547-8551 (2008).
[17] N. K. Allam, K. Shankar, C. A. Grimes, “Photoelectrochemical and Water Photoelectrolysis Properties of Ordered TiO2 Nanotubes Fabricated by Ti Anodization in Fluoride-free HCl Electrolytes,” J. Mater. Chem. 18, 2341-2348 (2008).
[18] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 ím in Length,” J. Phys. Chem. B 110, 16179-16184 (2006).
[19] K. S. Brammer, S. Oh, J. O. Gallagher, S. Jin, “Enhanced Cellular Mobility Guided by TiO2 Nanotube Surfaces,” Nano Lett. 8, 786-793 (2008).
[20] M. Y. Lan, C. P. Liu, H. H. Huang, J. K. Chang, S. W. Lee, “Diameter- sensitive Biocompatibility of Anodic TiO2 Nanotubes Treated with Supercritical CO2 Fluid,” Nanoscale Res. Lett. 8, 150-157 (2013).
[21] S. Liu, A. Chen, “Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing,” Langmuir 21, 8409-8413 (2005).
[22] M. Zlamal, J. M. Macak, P. Schmuki, J. Krýsa, Electrochemically Assisted Photocatalysis on Self-organized TiO2 Nanotubes,” Electrochem. Commun. 9, 2822-2826 (2007).
[23] S. K. Mohapatra, K. S. Raja, V. K. Mahajan, M. Misra, “Efficient Photoelectrolysis of Water using TiO2 Nanotube Arrays by Minimizing Recombination Losses with Organic Additives,” J. Phys. Chem. C 112, 11007-11012 (2008).
[24] C. A. Grimes, “Synthesis and Application of Highly Ordered Arrays of TiO2 Nanotubes,” J. Mater. Chem. 17, 1451-1457 (2007).
[25] T. S. Kang, A. P. Smith, B. E. Taylor, M. F. Durstock, “Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells,” Nano Lett. 9, 601-606 (2009).
[26] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array,” Langmuir 12, 1411-1413(1996).
[27] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, “Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications,” Chem. Mater. 20, 756-767 (2008).
[28] X. H. Li, W. M. Liu, H. L. Li, “Template Synthesis of Well-aligned Titanium Dioxide Nanotubes,” Appl. Phys. A 80, 317-320 (2005).
[29] M, Zhang, Y. Bando, K. Wada, “Sol-gel Template Preparation of TiO2 Nanotubes and Nanorods,” J. Mater. Sci. Lett. 20, 167-170 (2001).
[30] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing,” Adv. Mater. 11, 1307-1311 (1999).
[31] C. C. Tsai, H. Teng, “Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment,” Chem. Mater. 16, 4352-4358 (2004).
[32] M. Miyauchi, H. Tokudome, “Super-hydrophilic and Transparent Thin Films of TiO2 Nanotube Arrays by a Hydrothermal Reaction,” J. Mater. Chem. 17, 2095–2100 (2007).
[33] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, “The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes,” J. Mater. Chem. 14, 3370-3377 (2004).
[34] K. S. Raja, M. Misra, K. Paramguru, “Formation of Self-ordered Nano-tubular Structure of Anodic Oxide Layer on Titanium,” Electrochim. Acta 51, 154-165 (2005).
[35] A. Ghicov, H. Tsuchiya, J. M. Macak, P. Schmuki, “Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes,” Electrochem. Commun. 7, 505-509 (2005).
[36] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, “TiO2 Nanotubes: Self-organized Electrochemical Formation, Properties and Applications,” Curr. Opin. Solid St. M. 11, 3-18 (2007).
[37] B. G. Lee, J. W. Choi, S. E. Lee, Y. S. Jeong, H. J. Oh, C. S. Chi, “Formation Behavior of anodic Tio2 Nanotubes in fluoride Containing Electrolytes,” Trans. Nonferrous Met. Soc. China 19, 842-845 (2009).
[38] H. H. Ou, S. L. Lo, “Review of Titania Nanotubes Synthesized via The Hydrothermal Treatment: Fabrication, Modification, and Application,” Sep. Purif. Technol. 58, 179-191 (2007).
[39] H. Shin, D. K. Jeong, J. Lee, M. M. Sung, J. Kim, “Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness,” Adv. Mater. 16, 1197-1200 (2004).
[40] J. Park, Y. Ryu, H. Kim, C. Yu, “Simple and Fast Annealing Synthesis of Titanium Dioxide Nanostructures and Morphology Transformation During Annealing Processes,” Nanotechnology 20, 105608 (2009).
[41] M. A. Khan, H. T. Jung, O. B. Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes,” J. Phys. Chem. B 110, 6626-6630 (2006).
[42] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir 14, 3160-3163 (1998).
[43] D. Gong, C. A. Grimes, O. K. Varghese, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” J. Mater. Res. 16, 3331-3334 (2001).
[44] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, “Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy,” Surf. Interface Anal. 27, 629-637 (1999).
[45] P. Roy, S. Berger, P. Schmuki, “TiO2 Nanotubes: Synthesis and Applications,” Angew. Chem. Int. Ed. 50, 2904-2939 (2011).
[46] T. Tian, X. Xiao, R. Liu, H. She, X. Hu, “Study on Titania Nanotube Arrays Prepared by Titanium Anodization in NH4F/H2SO4 Solution,” J. Mater. Sci. 42, 5539-5543 (2007).
[47] J. H. Yun, Y, H. Ng, C. Ye, A. J. Mozer, G. G. Wallace, R. Amal, “Sodium Fluoride-Assisted Modulation of Anodized TiO2 Nanotube for Dye-Sensitized Solar Cells Application,” ACS Appl. Mater. Interfaces 3, 1585–1593 (2011).
[48] K. Das, A. Bandyopadhyay, S. Bose, “Biocompatibility and In Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry,” J. Am. Ceram. Soc. 91, 2808-2814 (2008).
[49] M. Ninomi, “Recent Metallic Materials for Biomedical Applications,” Metall. Mater. Trans. A 33, 477-486 (2002).
[50] A. W. Tan, B. Pingguan-Murphy, R. Ahmad, S. A. Akbar, “Review of Titania Nanotubes: Fabrication and Cellular Response,” Ceram. Int. 38, 4421-4435 (2012).
[51] S. G. Steinemann, “Titanium - the Material of Choice?,” Periodontology 2000 17, 7-21(1998).
[52] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, “Titanium in Medicine,” Springer, Berlin, 231-266 (2001).
[53] X. Liu, P. K. Chu, C. Ding, “Surface Modification of titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Mat. Sci .Eng. R 47, 49-121 (2004).
[54] C. Yao, E. B. Slamovich, T. J. Webster, “Enhanced Osteoblast Functions on Anodized Titanium with Nanotube-like Structures,” J. Biomed. Mater. Res. A 85,157-166 (2008).
[55] S. Oh, C. Daraio, L. H. Chen, T. R. Pisanic, R. R. Fiñones, S. Jin, “Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes,” J. Biomed. Mater. Res. A 78,97-103 (2006).
[56] S. Oh, S. Jin, “Titanium Oxide Nanotubes with Controlled Morphology for Enhanced Bone Growth,” Mat. Sci. Eng. C 26,1301-1306 (2006).
[57] J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. van der Mark, P. Schmuki, “TiO2 Nanotube Surfaces: 15 nm—An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation,” Small 5, 666-671 (2009).
[58] K. Burns, C. Yao, T. J. Webster, “Increased Chondrocyte Adhesion on Nanotubular Anodized Titanium,” J. Biomed. Mater. Res. A 88, 561-568 (2009).
[59] K. S. Brammer, S. Oh, C. J. Frandsen, S. Varghese, S. Jin, “Nanotube Surface Triggers Increased Chondrocyte Extracellular Matrix Production,” Mat. Sci. Eng. C 30, 518-525 (2010).
[60] L. Peng, M. L. Eltgroth, T. J. LaTempa, C. A. Grimes, T. A. Desai, “The Effect of TiO2 Nanotubes on Endothelial Function and Smooth Muscle Proliferation,” Biomaterials 30, 1268-1272 (2009).
[61] J. Park, S. Bauer, P. Schmuki, K. von der Mark, “Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces,” Nano Lett. 9, 3157-3164 (2009).
[62] L. Peng, A. J. Barczak, R. A. Barbeau, Y. Xiao, T. J. LaTempa, C. A. Grimes, T. A. Desai, “Whole Genome Expression Analysis Reveals Differential Effects of TiO2 Nanotubes on Vascular Cells,” Nano Lett. 10, 143-148 (2010).
[63] B. S. Smith, S. Yoriya, T. Johnson, K. C. Popat, “Dermal Fibroblast and Epidermal Keratinocyte Functionality on Titania Nanotube Arrays,” Acta Biomater. 7, 2686-2696 (2011).
[64] S. Oh, K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, S. Chien, S. Jin, “Stem Cell Fate Dictated Solely by Altered Nanotube Dimension,” PANS 106, 2130-2135 (2009).
[65] S. Bauer, J. Park, K. von der Mark, P. Schmuki, “Improved Attachment of Mesenchymal Stem Cells on Super-Hydrophobic TiO2 Nanotubes,” Acta Biomater. 4, 1576-1582 (2008).
[66] K. Webb, V. Hlady, P. A. Tresco, “Relative Importance of Surface Wettability and Charged Functional Groups on NIH 3T3 Fibroblast Attachment, Spreading, and Cytoskeletal Organization,” J. Biomed. Mater. Res. 41, 422-430 (1998).
[67] M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, A. S. G. Curtis, “Fibroblast Reaction to Island Topography: Changes in Cytoskeleton and Morphology with Time,” Biomaterials 24, 927-935 (2003).
[68] H. G. Craighead, C. D. James, A. M. P. Turner, “Current Issues and Advances in Dissociated Cell Culturing on Nano- and Microfabricated Substrates,” Curr. Opin. Solid St. M. 5, 177-184 (2001).
[69] J. P. Spatz, “Cell-Nanostructure Interactions,” Nanobiotechnology; Wiley-VCH Verlag: Weinheim, Germany, 53-65 (2004).
[70] V. Wagner, A. Dullaart, A. K. Bock, A. Zweck, “The Emerging Nanomedicine Landscape,” Nat. Biotechnol. 24,1211-1217 (2006).
[71] H. Tsuchiya, J. M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen, P. Schmuki, “Hydroxyapatite Growth on Anodic TiO2 Nanotubes,” J. Biomed. Mater. Res. A 77, 534-541 (2006).
[72] M. F. Maitz, M. T. Pham, E. Wieser, “Blood Compatibility of Titanium Oxides with Various Crystal Structure and Element Doping,” J. Biomater. Appl. 17, 303-319 (2003).
[73] R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, “Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films,” J. Phys. Chem. B 105, 1984-1990 (2001).
[74] K. Gulati, S. Ramakrishnan, M. S. Aw, G. J. Atkins, D. M. Findlay, D. Losic, “Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion,” Acta Biomater. 8, 449-456 (2012).
[75] K. Das, S. Bose, A. Bandyopadhyay, B. Karandikar, B. L. Gibbins, “Surface Coatings for Improvement of Bone Cell Materials and Antimicrobial Activities of Ti Implants,” J. Biomed. Mater. Res. B 87, 455-460 (2008).
[76] Y. Fukushima, H.Wakayama, “Nanoscale Casting Using Supercritical Fluid,” J. Chem. Phys. B. 103, 3062-3064 (1999).
[77] B. Xie, C. C. Finstad, A. J. Muscat, “Removal of Copper from Silicon Surfaces Using Hexafluoroacetylacetone (hfacH) Dissolved in Supercritical Carbon Dioxide,” Chem. Mater. 17, 1753-1764 (2005).
[78] K. M. Dooley, C. P. Kao, R. P. Gambrell, F. C. Knopf, “The Use of Entrainers in the Supercritical Extraction of Soils Contaminated with Hazardous Organics,“ Ind. Eng. Chem. Res. 26, 2058-2062 (1987).
[79] C. Y. Chen, J. K. Chng, W. T. Tsai, C. H. Hung, “Uniform Dispersion of Pd Nanoparticles on Carbon Nanostructures Using a Supercritical Fluid Deposition Technique and Their Catalytic Performance Towards Hydrogen Spillover,” J. Mater. Chem. 21, 19063 (2011).
[80] A. G. Kontos, A. I. Kontos, D. S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, “Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology,” Nanotechnology 20, 045603 (2009).
[81] W. R. Fahrner, “Nanotechnology and Nanoelectronics Materials, Devices,” Measurement Techniques, Springer, New York (2005).
[82] J. B. Heller, J. S. Gabbay, A. Trussler, M. M. Heller, J. P. Bradley, “Repair of Large Nasal Septal Perforations Using Facial Artery Musculomucosal (FAMM) Flap,” Ann. Plast. Surg. 55, 456-459 (2005).
[83] L. Persutti, M. A. Ciufelli, D. Marchioni, D. Villari, A. Marchetti, F. Mattioli, “Nasal septal perforation: our surgical technique,” Otolaryng Head. Neck. 136, 369-372 (2007).
[84] J. R. Coleman, E. B. Strong, “Management of Nasal Septal Perforation,” Curr. Opin. Otolaryngol. Head. Neck. Surg. 8, 58-62 (2000).
[85] H. Tschernitschek, L. Borchers, W. Geurtsen, “Nonalloyed titanium as a bioinert metal- A Review,” Quintessence Int. 36, 523-530 (2005).
[86] J. Ganele, A. Zöllner, J. Jackowski, C. ten Bruggenkate, J. Beagle, F. Guerra, “Immediate and Early Loading of Straumann Implants with a Chemically Modified Surface (SLActive) in the Posterior Mandible and Maxilla: 1-year Results from a Prospective Multicenter Study,” Clin. Oral Implants Res. 19, 1119-1128 (2008).
[87] N. Yamamichi, T. Itose, R. Neiva, H. L. Wang, “Long-term Evaluation of Implant Survival in Augmented Sinuses: A Case Series,” Int. J. Periodont. Rest. 28, 163-169 (2008).
[88] O. Zinger, K. Anselme, A. Dnezer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin, D. Landolt, “Time-dependent Morphology and Adhesion of Osteoblastic Cells on Titanium Model Surfaces Featuring Scale-resolved Topography,” Biomaterials 25, 2695-2711 (2004).
[89] W. E. Yang, H. H. Huang, “Improving the Biocompatibility of Titanium Surface Through Formation of a TiO2 Nano-mesh Layer,” Thin Solid Films 518, 7545-7550 (2010).
[90] J. Park, S. Bauer, K. von der Mark, P. Schmuki, “Nanosize and Vitality: TiO2 Nanotube Diameter Directs Cell Fate,” Nano Lett. 7, 1686-1691 (2007).
[91] Z. Su, W. Zhou, “Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides,” Adv. Mater. 20, 3663-3667 (2008).
[92] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu, “TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/- Catalytic Performance,” Chem. Mater. 21, 1198-1206 (2009).
[93] C. W. Lai, S. Sreekantan, “Photoelectrochemical Performance of Smooth TiO2 Nanotube Arrays: Effect of Anodization Temperature and Cleaning Methods. Int. J. Photoenergy 2012, 356943 (2012).
[94] K. Das, S. Bose, A. Bandyopadhyay, “Surface Modifications and Cell-Materials Interactions with Anodized Ti,” Acta Biomater. 3, 573-585 (2007).
[95] R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” Ind .Eng. Chem. 28, 988-994 (1936).
[96] A. B. D. Cassie, S. Baxter, “Wettability of Porous Surfaces,” Trans. Farad. Soc. 40, 546–551 (1944).
[97] M. D. Petters, A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, P. J. Ziemann, “Chemical Aging and the Hydrophobic-to-Hydrophilic Conversion of Carbonaceous Aerosol,” Geophys. Res. Let. 33, L24806 (2006).
[98] K. Hashimoto, H. Irie, A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys. 44, 8269-8285 (2005).
[99] V. Collins-Martínez, A. L. Ortiz, A. A. Elguézabal, “Influence of the anatase/rutile ratio on the TiO2 photocatalytic activity for the photodegradation of light hydrocarbons” Int. J. Chem. React. Eng. 5, A92 (2007).
[100] L. Lauchlan, S. P. Chen, S. Etemad, M. Kletter, A. J. Heeger, A. G. MacDiarmid, “Absolute Raman Scattering Cross Sections of Trans-(CH)x,” Phys. Rev. B 27, 2301–2307 (1983).
[101] K. Kalyanasundaram, J. K. Thomas, “On The Conformational State of Surfactants in the Solid State and in Micellar Form, A laser-excited Raman scattering study,” J. Phys. Chem. 80, 1462-1473 (1976).
[102] D. D. Schlaepfer, C. R. Hauck, D. J. Sieg, “Signaling Through Focal Adhesion Kinase,” Prog. Biophys. Mol. Bio. 71, 435-478 (1999).
[103] C. Y. Flores, C. Diaz, A. Rubert, G. A. Benítez, M. S. Moreno, M. A. F. L. de Mele, R. C. Salvarezza, P. L. Schilardi, C. Vericat, “Spontaneous Adsorption of Silver Nanoparticles on Ti/TiO2 Surfaces. Antibacterial Effect On Pseudomonas Aeruginosa,” J. Colloid. Interf. Sci. 350, 402-408 (2010).
[104] K. D. O. Boahene. Synthetic Implants. In: Papel ID JT, editor. “Facial Plastic and Reconstructive Surgery,” New York, NY: Thieme, 67-75 (2009).
[105] B. Gibbins, L.Warne, “The Role of Antimicrobial Silver Nano- technology,” Med. Device. Diagn. Ind. 8, 2-5 (2005).
[106] K. Chaloupka, Y. Malam, A. M. Seifalian, “Nanosilver as a New Generation of Nanoproduct in Biomedical Applications,” Biotechnol. 28, 580-588 (2010).
[107] M. Y. Lan, C. P. Liu, H. H. Huang, J. K. Chang, S. W. Lee, “Diameter-sensitive Biocompatibility of Anodic TiO2 Nanotubes Treated with Supercritical CO2 Fluid,” Nanoscale Res. Lett. 8, 150 (2013).
[108] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A. Tryk, A. V. Emeline, T. Murakami, A. Fujishima, “Light-stimulated Composition Conversion in TiO2-based Nanofibers,” J. Phys. Chem. C 111, 658-665 (2007).
[109] E. Körner, M. H. Aguirre, G. Fortunato, A. Ritter, J. Rühe, D. Hegemann, “Formation and Distribution of Silver Nanoparticles in a Functional Plasma Polymer Matrix and Related Ag+ Release Properties,” Plasma Process. Polym. 7, 619-625 (2010).
[110] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, “Silver Nanoparticles: Partial Oxidation and Antibacterial Activities,” J. Biol. Inorg. Chem. 12, 527-534 (2007).
[111] S. H. Uhm, D. H. Song, J. S. Kwon, S. B. Lee, J. G. Han, K. M. Kim, K. N. Kim, “E-beam Fabrication of Antibacterial Silver Nanoparticles on Diameter-controlled TiO2 Nanotubes for Bio-implants,” Surf. Coat. Tech. , doi:10.1016/j.surfcoat.2012.05.102 (2012).
[112] R. Kumar, H. Münstedt, “Silver Ion Release from Antimicrobial Polyamide/Silver Composites,” Biomaterials 26, 2081-2088 (2005).
[113] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu, P. K. Chu, “Antibacterial Nano-structured Titania Coating Incorporated with Silver Nanoparticles,” Biomaterials 32, 5706-5716 (2011).
[114] F. Meng, Z. Sun, “A Mechanism for Enhanced Hydrophilicity of Silver Nanoparticles Modified TiO2 Thin Films Deposited by RF Magnetron Sputtering,” Appl. Surf. Sci. 255, 6715-6720 (2009).
[115] D. W. Hatchett, H. S. White, “Electrochemistry of Sulfur Adlayers on The Low-index Daces of Silver,” J. Phys. Chem. 100, 9854-9859 (1996).
[116] T. Vitanov, A. Popov, “Adsorption of SO42− on Growth Steps of (111) and (100) Faces of Silver Single Crystals,” J. Electroanal. Chem. 159, 437-441 (1983).
[117] I. Sondi, B. Salopek-Sondi, “Silver Nanoparticles as Antimicrobial Agent a Case Study on E. coli as a Model for Gram-negative Bacteria,” J. Colloid Interf. Sci. 275, 177–182 (2004).
[118] Y. Matsumura, K. Yoshikata, S. Kunisaki, T. Tsuchido, “Mode of Bactericidal Action of Silver Zeolite and its Comparison with That of Silver Nitrate,” Appl. Environ. Microbiol. 69, 4278-4281 (2003).
[119] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, “A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus,” J. Biomed. Mater. Res. 52, 662–668 (2000).
[120] H. J. Park, J. Y. Kim, J. Kim, J. H. Lee, J. S. Hahn, M. B. Gu, J. Yoon, “Silver-ion-mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity,” Water Res. 43, 1027-1032 (2009).
[121] J. Takagi, B. M. Petre, T. Walz, T. A. Springer, “Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-in and Inside-out Signaling,” Cell 110, 599-511 (2002).
[122] K. M. Woo, V. J. Chen, P. X. Ma, “Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment,” J. Biomed.Mater. Res. A 67, 531-537 (2003).
[123] H. Notsu, W. Kubo, I. Shitanda, T. Tatsuma, “Super-hydrophobic/ Super-hydrophilic Patterning of Gold Surfaces by Photocatalytic Lithography,” J. Mater. Chem. 15, 1523-1527 (2005).
[124] J. Bico. U. Thiele, D. Quéré, “Wetting of Textured Surfaces,” Colloid. Surface A 206, 41-46 (2002).
[125] H. Hiramatsu, F. E. Osterloh, “A Simple Large-scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16, 2509-2511 (2004).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2013-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明