博碩士論文 982413003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.144.25.74
姓名 邱佩洵(Pei-hsun Chiu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 中醫癌症處方多由癰瘍、和解之劑與寒方組成,並隨氣溫下降而更改組成
(TCM cancer prescriptions are made up of carbuncle-treating, mediating formulas and cold herbs and are subject to modification in winter)
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 利用健保資料庫探討常見複雜疾病之中草藥處方研究
★ 主觀影響療癒的案例與主觀在醫療重要性的探討★ 精神分裂症病患與正常人之DNA甲基化網絡的差異
★ 躁鬱症病患的精子之DNA 甲基化的網路分析★ Cloud-R:以R軟體與雲端技術為基礎的生物統計應用網站
★ 中草藥藥性與中草藥遺傳演化樹之關係★ 利用階層式叢集及不同分類方法分析人類正常組織特異性基因
★ 由ENCODE計畫分析脫氧核醣核酸酶I與組蛋白修飾★ 皮膚痣圖片毛髮辨識去除
★ 主成分分析與叢集分析於DNA微陣列數據前處理的應用與實作★ 確認與中醫處方有關的環境和社會經濟變數
★ 與中醫處方有關的社會經濟變量關係網絡的確認與分析★ 開發CNN模型預測學生是否退學— 練習如何建立AI模型以從NGS短序列片段數據中偵測SNP
★ 深度 Q 網絡學習用於加護病房敗血症治療★ 比較線性模型、多層感知器和卷積神經網絡在回歸分析應用中的性能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 癌症是由於細胞的基因發生突變,突變的發生除了基因自然突變之外,生活環境(例如,暴露於有毒化學藥劑、紫外光、輻射線與病毒感染等)與老化,皆會增加基因發生突變的機會。2011年,癌症分子生物科學家Douglas Hanahan 與 Robert A. Weinberg在Cell期刊,發表一篇回顧文章,歸納10種與癌症相關的分子標誌,例如:細胞過度增生、細胞不死與誘導血管新生等癌症分子標誌。每一個分子標誌皆說明各機制中,發生變異的基因與基因間(或者基因與蛋白質間)的相互作用。該文章不僅整合癌症的特點及指標,也詳述了癌症細胞發展的組織原則,同時也指出未來癌症治療的方向。2013年,美國癌症基因體圖譜計畫TCGA(The Cancer Genome Atlas),在Nature期刊發表一系列文章,說明不同類型的癌症,例如,惡性子宮內膜癌、惡性乳癌與卵巢癌,分享相同的突變基因,例如,PTEN、CTNNB1、PIK3CA、ARID1A與KRAS等。西方醫學治療癌症之方法發展至今,除了基本腫瘤手術切除、放射性治療與化學性治療外,還有針對癌症類型的標靶治療。隨著癌症擁有不同的分子標誌,若能針對突變基因的多種路徑,做多重性標靶個人化治療,將會為未來癌症治療帶來曙光。
擁有兩千多年歷史的中國傳統醫學,已有個人化醫療的概念。西元1973年,在湖南省長沙馬王堆三號西漢古墓出土了馬王堆醫書,被人文歷史學家認為是最早的中醫醫書。在馬王堆醫書中記載,醫者是透過判斷脈象來診斷患者之疾病。醫者經由為患者診脈方式瞭解個人之臟腑經絡,判斷其體質之虛實、冷熱,根據疾病所致之症候輕重,分別給予具緩解功能之針灸、中草藥物(單/複方),用以調節個人陰陽氣血之平衡。
本研究利用台灣健保局資料庫,分析了2007年共187,230個中醫癌症處方,其中涵蓋了30種類型的常見癌症。根據本論文發現,一個中醫癌症處方平均為兩味複方與四味單方所組成,其中複方在處方中扮演主要的角色,而單方則扮演輔助與微調的角色。在所有處方中,為健保給付所包含的中草藥之單/複方(共746種科學中藥)做重量與排名分佈,並發現重量與排名之分佈,遵循齊普夫分佈。 中草藥單/複方之重量百分比越重,則其排名之名次越高。因此,名次越高之單/複方,是處方中重要的成分。依據中草藥之單/複方重量做排名的中醫癌症處方,能夠明顯地被齊普夫分佈法,將中醫癌症處方分類為良性與惡性腫瘤之處方,其中惡性腫瘤處方的齊普夫指數比良性腫瘤處方低。齊普夫指數越低,代表處方中之單/複方(之重量百分比)越相近,同時也意味著齊普夫指數較低的惡性腫瘤之疾病複雜度高。除此之外,本論文亦將癌症處方按照中草藥之單/複方的功能與特性,分別為各類癌症做分類。中草藥單/複方依照,清代汪昂的著作《醫方集解》(西元1682年),將單方依照四氣與五味分類;複方分為21類,分別為30種癌症做分類。階層式層級法分析結果,所有的中草藥單/複方能明顯地被階層式分析法,將中醫癌症處方分類為良性腫瘤與惡性腫之不同的群組,且惡性腫瘤的群組間距離相近之處方,推論是按其身體解剖部位與生理功能所開立。由於處方中多為有補養、和解與理血功能等為主的複方與寒苦性等之單方,因此本論文推斷,中醫視癌症為陰虛與血瘀之熱性症候的疾病。此外,本論文將處方依四季分類,透過主成分分析法分析數據,發現四季中之處方,屬秋季進入冬季的處方變化差異最大,而造成差異之氣象因素為溫度下降。
本論文也探討30種類型的癌症之處方與其中單/複方之功能與特性,並將常用之中草藥單/複方,對應於西醫已知的10種癌症分子標誌(hallmarks of cancer)。如西醫觀點認為癌細胞過度增生的分子標誌,中醫則利用癰瘍之劑功能的複方與寒性的單方來治療,化解體內氣血毒物、幫助手術傷口癒合與抑制發炎反應。本論文並對各別癌症處方做深入的研究,發現各類型的癌症依據其不同的解剖位置與生理功能會有常用的組合,包含複方-複方、複方-單方與單方-單方的中草藥組合。整理出中醫癌症處方,針對每一種癌症類型排名最常使用的前12名複方與單方草藥與其功能。例如:歸類為理血之劑之桂枝茯苓丸最常與,歸類為和解之劑的加味逍遙散作組合,適用於治療女性的子宮肌瘤。本論文透過健保資料,將中醫處方與西醫疾病做對接,未來期望利用生物實驗與臨床試驗證明中醫處方之效果。
摘要(英) According to World Health Organization report, cancer is the number one cause of mortality worldwide. Most cancers develop because of mutations in genes. Many environmental risk factors increase mutations, leading people to cancer. DNA mutations maybe passed from parent to child. For example, cancers of the breast, ovary and colon sometimes run in families. In addition, the most important risk factor for cancer is growing older. Moreover, tobacco use, UV light, ionizing radiation, certain viruses, or other factors in person’s lifestyle or environment can cause mutations in cells. Over time, cells become cancerous after mutations accumulate in the various genes that control cell proliferation.
In 2011, Douglas Hanahan and Robert A. Weinberg published a review article, identifying 10 hallmarkss features in the carcinogenic process. For example, evading growth suppressors, sustaining proliferative signaling and inducing angiogenesis are important hallmarks. Cells acquired hallmark capabilities for tumor growth and progression. These hallmarks have provided a useful conceptual framework for understanding the complex biology of cancer. For clinical trials, people can be treated with a combination of drugs to against each of the capabilities.
Traditional Chinese medicine (TCM) is a system of theories and therapies in ancient Chinese, dating back 2100 years. According to TCM theories, an imbalance in the individual’s body can cause disease. TCM practitioners usually make diagnosis, called Zheng, by observation, inquiry, smelling/listening, and palpation. After the individual’s Zheng is determined, a TCM prescription is made.
In our study, we analyzed 187,230 TCM prescriptions to 30 types of cancer in Taiwan in 2007. The big data was retrieved from the National Health Insurance reimbursement database (Taiwan). We found that one TCM cancer prescription consist of two formulas and four herbs on average. We found the percentage weights of TCM formulas and herbs in one prescription allow the Zipf’s law with an exponent 0.6. We also found prescriptions for benign tumors have a larger Zipf’s exponent than prescription for malignant cancers. Furthermore, we found the combinations of formulas and herbs are specific to sites of origins of cancers. From the TCM functions of dominant formulas and natural of dominant herbs, we found that cancers are a ‘warm and stagnant’ syndrome in TCM perspective. We show that cancer patients with a secondary morbidity, stomach disorder and sleep disturbance, were prescript by peptic and tranquilizing formulas, respectively. We also analyzed TCM prescriptions by seasons and identified that temperature drop correlates with changes in TCM prescriptions in Taiwan.
Furthermore, we analyzed prescriptions for individual cancers. Top 12 formulas and 12 herbs were identified. In addition, we identified the most common combinations between formulas and herbs, formulas and formulas, and herbs and herbs for each cancer. As an example, for uterine leiomyoma, the most common combination is Gui Zhi Fu Ling Wan (carbuncle treating) and Jia Wei Xiao Yao San (mediating). The findings of our study provide insight to TCM cancer treatment, helping a dialogue between modern western medicine and TCM for better cancer care.
關鍵字(中) ★ 中醫癌症處方
★ 癰瘍之劑
★ 和解之劑
★ 寒方
關鍵字(英) ★ TCM cancer prescriptions
★ carbuncle-treating
★ mediating formulas
★ cold herbs
論文目次 中文摘要 i
英文摘要 iii
目錄 v
圖目錄 ix
表格目錄 x
附錄圖表 xi
第一部分 1
第一章 癌症 1
第一節 背景介紹 1
第二章 分子標誌 7
第一節 細胞持續增殖的信號 10
第一項 體細胞突變活化其他下游途徑 14
第二項 破壞減弱增殖信號機制的負回饋 15
第三項 過度的信號增殖能觸發細胞衰老 17
第二節 逃避生長抑制 18
第一項 惡性腫瘤中接觸抑制與逃脫抑制的機制 20
第二項 TGF-b路徑受抑制可能引起惡性腫瘤的形成 22
第三節 拒絕細胞死亡 22
第一項 自我吞噬調節癌腫療的生存與死亡 25
第二項 細胞壞死會產生發炎反應與促進惡性腫瘤發生的潛力 27
第四節 惡性腫瘤啟動不朽的複製機制 28
第一項 細胞複製性衰老的再評估 30
第二項 端粒酶活化的延遲可以限制又培育惡性腫瘤進展 31
第三項 端粒酶的新功能 32
第五節 誘導血管新生 32
第一項 血管新生開關的級別 36
第二項 內生性的血管生成物質抑制劑是血管生成的天然屏障 37
第三項 周邊細胞是惡性腫瘤血管新生機制的重要組成 37
第四項 各式各樣的骨髓源性細胞對惡性腫瘤血管新生有貢獻 38
第六節 惡性腫瘤侵犯與轉移的活化 39
第一項 上皮-間質細胞轉換程序能夠調節惡性腫瘤侵襲與轉移 41
第二項 間質細胞對侵襲與轉移的異質性貢獻 43
第三項 侵襲性生長程序的可塑性 44
第四項 不同類型惡性腫瘤具有不同侵襲方式 44
第五項 複雜的轉移 45
第六項 由細胞內迴路設計的特徵能力 47
第七節 已有促進惡性腫瘤的特徵和新興的標誌 47
第一項 有利的特點:基因組不穩定性與變異 48
第二項 有利的特點:促進腫瘤發炎 50
第八節 新興特徵:能量代謝重編程並對招募來的基質細胞功能及其對腫瘤的貢獻進一步闡述 50
第九節 新興特徵:逃避免疫破壞 54
第十節 腫瘤微環境 57
第一項 惡性腫瘤細胞與惡性腫瘤幹細胞 58
第二項 內皮細胞 62
第三項 周細胞 63
第四項 免疫炎症細胞 63
第五項 惡性腫瘤相關的纖維母細胞 65
第六項 惡性腫瘤間質幹細胞與祖細胞 65
第七項 異質信號協同惡性腫瘤微環境的細胞 66
第三章 癌症治療的進步 67
第一節 放射性治療與化學治療 68
第二節 標靶治療 68
第三節 癌症免疫治療法 69
第二部分 中國古代醫學概念 72
第四章 中國古代醫學─形成與理論 72
第一節 醫術的起源 72
第二節 王馬堆醫書與脈之確立 72
第五章 中國古代醫藥學 ─本草與方劑的起源 74
第一節 本草的起源 74
第二節 方劑之起源與症候之結合 74
第三節 藥物之要點 75
第四節 病因之分類 78
第六章 現代中醫醫學─ 中醫醫學理論 79
第一節 體內平衡與陰陽調和 79
第二節 中醫與癌症 80
第三部分 82
第七章 研究結果與討論 82
第一節 材料與方法 85
第一項 台灣全民健康保險研究資料庫 85
第二項 數據分析 85
第二節 結果 90
第一項 齊普夫樣分布的中草藥單/複方與癌症 92
第二項 中醫癌症處方對癌症發生部位的專一性 95
第三項 中醫癌症處方多為補養、和解與祛火之功能 97
第四項 根據次要診斷做調整的中醫癌症處方 100
第五項 中醫癌症處方對於肺部、消化道與女性生殖系統等器官隨著季節微調 104
第三節 討論 107
第八章 中醫對癌症治療:癰瘍之劑、和解之劑與微寒性中草藥 112
第一節 良性腫瘤之常用單/複方 112
第二節 惡性腫瘤之常用單/複方 113
第三節 互相呼應的治療方式 115
第四節 中醫癌症之單/複方應用 117
第九章 處方中常用之單/複方及其功能與組合 118
第一節 良性腫瘤 118
第一項 子宮肌瘤 118
第二項 良性子宮肌瘤 119
第三項 卵巢良性腫瘤 120
第四項 甲狀腺之良性腫瘤 121
第五項 乳房良性腫瘤 122
第六項 脂肪瘤 123
第七項 男性生殖器官之良性腫瘤 124
第八項 其他消化系統之良性腫瘤 125
第九項 乳房及泌尿生殖系統之原位癌 126
第十項 腦及其他神經系統部位之良性腫瘤 127
第二節 惡性腫瘤 128
第一項 女性乳房惡性腫瘤 128
第二項 肝惡性腫瘤 129
第三項 鼻咽惡性腫瘤 130
第四項 結腸惡性腫瘤 131
第五項 直腸,直腸乙狀結腸連接部及肛門之惡性腫瘤 132
第六項 氣管、支氣管及肺之惡性腫瘤 133
第七項 子宮頸惡性腫瘤 134
第八項 胃惡性腫瘤 135
第九項 攝護腺(前列腺)惡性腫瘤 136
第十項 卵巢及其他子宮附屬器之惡性腫瘤 137
第十一項 膀胱惡性腫瘤 138
第十二項 甲狀腺惡性腫瘤 139
第十三項 呼吸及消化系統之續發性惡性腫瘤 140
第十四項 口之其他及未明示部位之惡性腫瘤 141
第十五項 舌惡性腫瘤 142
第十六項 腦惡性腫瘤 143
第十七項 淋巴及組織細胞組織之其他惡性腫瘤 144
第十八項 腎臟及其他與未明示泌尿器官之惡性腫瘤 145
第十九項 食道惡性腫瘤 146
第二十項 其他及部位分界不明之惡性腫瘤 147
第十章 未來展望 148
第十一章 參考文獻 150
第十二章 附錄 172
參考文獻 1. ; Available from: http://www.who.int/mediacentre/factsheets/fs297/en/index.html.
2. Finkel, T., M. Serrano, and M.A. Blasco, The common biology of cancer and ageing. Nature, 2007. 448(7155): p. 767-74.
3. Boffetta, P. and F. Nyberg, Contribution of environmental factors to cancer risk. Br Med Bull, 2003. 68: p. 71-94.
4. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
5. Nakasone, E.S., et al., Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell, 2012. 21(4): p. 488-503.
6. de Visser, K.E., A. Eichten, and L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat Rev Cancer, 2006. 6(1): p. 24-37.
7. Kandoth, C., et al., Integrated genomic characterization of endometrial carcinoma. Nature, 2013. 497(7447): p. 67-73.
8. Arora, A. and E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther, 2005. 315(3): p. 971-9.
9. Hartmann, J.T., et al., Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab, 2009. 10(5): p. 470-81.
10. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010. 141(7): p. 1117-34.
11. Hynes, N.E. and G. MacDonald, ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol, 2009. 21(2): p. 177-84.
12. Perona, R., Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol, 2006. 8(2): p. 77-82.
13. Yu, J., C. Ustach, and H.R. Kim, Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol, 2003. 36(1): p. 49-59.
14. Cheng, N., et al., Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Mol Cancer Res, 2008. 6(10): p. 1521-33.
15. Bhowmick, N.A., E.G. Neilson, and H.L. Moses, Stromal fibroblasts in cancer initiation and progression. Nature, 2004. 432(7015): p. 332-7.
16. Hynes, N.E. and H.A. Lane, ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 2005. 5(5): p. 341-54.
17. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res, 1989. 49(17): p. 4682-9.
18. Kan, Z., et al., Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 2010. 466(7308): p. 869-73.
19. Brose, M.S., et al., BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res, 2002. 62(23): p. 6997-7000.
20. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
21. Steelman, L.S., et al., Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia, 2011. 25(7): p. 1080-94.
22. Davies, M.A. and Y. Samuels, Analysis of the genome to personalize therapy for melanoma. Oncogene, 2010. 29(41): p. 5545-55.
23. Jiang, B.H. and L.Z. Liu, PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res, 2009. 102: p. 19-65.
24. Yuan, T.L. and L.C. Cantley, PI3K pathway alterations in cancer: variations on a theme. Oncogene, 2008. 27(41): p. 5497-510.
25. Wertz, I.E. and V.M. Dixit, Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ, 2010. 17(1): p. 14-24.
26. Cabrita, M.A. and G. Christofori, Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis, 2008. 11(1): p. 53-62.
27. Amit, I., et al., A module of negative feedback regulators defines growth factor signaling. Nat Genet, 2007. 39(4): p. 503-12.
28. Mosesson, Y., G.B. Mills, and Y. Yarden, Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer, 2008. 8(11): p. 835-50.
29. Barbacid, M., ras genes. Annu Rev Biochem, 1987. 56: p. 779-827.
30. Medema, R.H. and J.L. Bos, The role of p21ras in receptor tyrosine kinase signaling. Crit Rev Oncog, 1993. 4(6): p. 615-61.
31. Sudarsanam, S. and D.E. Johnson, Functional consequences of mTOR inhibition. Curr Opin Drug Discov Devel, 2010. 13(1): p. 31-40.
32. O’Reilly, K.E., et al., mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res, 2006. 66(3): p. 1500-8.
33. Collado, M. and M. Serrano, Senescence in tumours: evidence from mice and humans. Nat Rev Cancer, 2010. 10(1): p. 51-7.
34. Evan, G.I. and F. d’Adda di Fagagna, Cellular senescence: hot or what? Curr Opin Genet Dev, 2009. 19(1): p. 25-31.
35. Lowe, S.W., E. Cepero, and G. Evan, Intrinsic tumour suppression. Nature, 2004. 432(7015): p. 307-15.
36. Mooi, W.J. and D.S. Peeper, Oncogene-induced cell senescence--halting on the road to cancer. N Engl J Med, 2006. 355(10): p. 1037-46.
37. Burkhart, D.L. and J. Sage, Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer, 2008. 8(9): p. 671-82.
38. Deshpande, A., P. Sicinski, and P.W. Hinds, Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005. 24(17): p. 2909-15.
39. Sherr, C.J. and F. McCormick, The RB and p53 pathways in cancer. Cancer Cell, 2002. 2(2): p. 103-12.
40. Lipinski, M.M. and T. Jacks, The retinoblastoma gene family in differentiation and development. Oncogene, 1999. 18(55): p. 7873-82.
41. Ghebranious, N. and L.A. Donehower, Mouse models in tumor suppression. Oncogene, 1998. 17(25): p. 3385-400.
42. Curto, M., et al., Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol, 2007. 177(5): p. 893-903.
43. Okada, T., M. Lopez-Lago, and F.G. Giancotti, Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol, 2005. 171(2): p. 361-71.
44. Shaw, R.J., Tumor suppression by LKB1: SIK-ness prevents metastasis. Sci Signal, 2009. 2(86): p. pe55.
45. Partanen, J.I., A.I. Nieminen, and J. Klefstrom, 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc. Cell Cycle, 2009. 8(5): p. 716-24.
46. Hezel, A.F. and N. Bardeesy, LKB1; linking cell structure and tumor suppression. Oncogene, 2008. 27(55): p. 6908-19.
47. Ikushima, H. and K. Miyazono, TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24.
48. Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30.
49. Bierie, B. and H.L. Moses, Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer, 2006. 6(7): p. 506-20.
50. Willis, S.N. and J.M. Adams, Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol, 2005. 17(6): p. 617-25.
51. Evan, G. and T. Littlewood, A matter of life and cell death. Science, 1998. 281(5381): p. 1317-22.
52. Adams, J.M. and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007. 26(9): p. 1324-37.
53. Junttila, M.R. and G.I. Evan, p53--a Jack of all trades but master of none. Nat Rev Cancer, 2009. 9(11): p. 821-9.
54. Levine, B. and G. Kroemer, Autophagy in the pathogenesis of disease. Cell, 2008. 132(1): p. 27-42.
55. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
56. Apel, A., et al., Autophagy-A double-edged sword in oncology. Int J Cancer, 2009. 125(5): p. 991-5.
57. Amaravadi, R.K. and C.B. Thompson, The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res, 2007. 13(24): p. 7271-9.
58. Sinha, S. and B. Levine, The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene, 2008. 27 Suppl 1: p. S137-48.
59. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer, 2007. 7(12): p. 961-7.
60. White, E. and R.S. DiPaola, The double-edged sword of autophagy modulation in cancer. Clin Cancer Res, 2009. 15(17): p. 5308-16.
61. Lu, Z., et al., The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest, 2008. 118(12): p. 3917-29.
62. Galluzzi, L. and G. Kroemer, Necroptosis: a specialized pathway of programmed necrosis. Cell, 2008. 135(7): p. 1161-3.
63. Zong, W.X. and C.B. Thompson, Necrotic death as a cell fate. Genes Dev, 2006. 20(1): p. 1-15.
64. Grivennikov, S.I., F.R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, 2010. 140(6): p. 883-99.
65. White, E., et al., Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol, 2010. 22(2): p. 212-7.
66. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 2005. 6(8): p. 611-22.
67. Shay, J.W. and W.E. Wright, Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol, 2000. 1(1): p. 72-6.
68. Artandi, S.E., et al., Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature, 2000. 406(6796): p. 641-5.
69. Harley, C.B., et al., Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol, 1994. 59: p. 307-15.
70. Ince, T.A., et al., Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell, 2007. 12(2): p. 160-70.
71. Passos, J.F., G. Saretzki, and T. von Zglinicki, DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res, 2007. 35(22): p. 7505-13.
72. Zhang, H., et al., Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions. Oncogene, 2004. 23(37): p. 6193-8.
73. Sherr, C.J. and R.A. DePinho, Cellular senescence: mitotic clock or culture shock? Cell, 2000. 102(4): p. 407-10.
74. Artandi, S.E. and R.A. DePinho, Telomeres and telomerase in cancer. Carcinogenesis, 2010. 31(1): p. 9-18.
75. Feldser, D.M. and C.W. Greider, Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell, 2007. 11(5): p. 461-9.
76. Kawai, T., et al., Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am J Clin Pathol, 2007. 127(2): p. 254-62.
77. Hansel, D.E., et al., Telomere length variation in biliary tract metaplasia, dysplasia, and carcinoma. Mod Pathol, 2006. 19(6): p. 772-9.
78. Raynaud, C.M., et al., DNA damage repair and telomere length in normal breast, preneoplastic lesions, and invasive cancer. Am J Clin Oncol, 2010. 33(4): p. 341-5.
79. Chin, K., et al., In situ analyses of genome instability in breast cancer. Nat Genet, 2004. 36(9): p. 984-8.
80. Cong, Y. and J.W. Shay, Actions of human telomerase beyond telomeres. Cell Res, 2008. 18(7): p. 725-32.
81. Kang, H.J., et al., Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci, 2004. 24(6): p. 1280-7.
82. Masutomi, K., et al., The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A, 2005. 102(23): p. 8222-7.
83. Maida, Y., et al., An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature, 2009. 461(7261): p. 230-5.
84. Park, J.I., et al., Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009. 460(7251): p. 66-72.
85. Hanahan, D. and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-64.
86. Baeriswyl, V. and G. Christofori, The angiogenic switch in carcinogenesis. Semin Cancer Biol, 2009. 19(5): p. 329-37.
87. Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737-44.
88. Ferrara, N., Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol, 2009. 29(6): p. 789-91.
89. Mac Gabhann, F. and A.S. Popel, Systems biology of vascular endothelial growth factors. Microcirculation, 2008. 15(8): p. 715-38.
90. Carmeliet, P., VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005. 69 Suppl 3: p. 4-10.
91. Kessenbrock, K., V. Plaks, and Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010. 141(1): p. 52-67.
92. Nagy, J.A., et al., Heterogeneity of the tumor vasculature. Semin Thromb Hemost, 2010. 36(3): p. 321-31.
93. Baluk, P., H. Hashizume, and D.M. McDonald, Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev, 2005. 15(1): p. 102-11.
94. Raica, M., A.M. Cimpean, and D. Ribatti, Angiogenesis in pre-malignant conditions. Eur J Cancer, 2009. 45(11): p. 1924-34.
95. Olive, K.P., et al., Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009. 324(5933): p. 1457-61.
96. Zee, Y.K., et al., Imaging angiogenesis of genitourinary tumors. Nat Rev Urol, 2010. 7(2): p. 69-82.
97. Turner, H.E., et al., Angiogenesis in endocrine tumors. Endocr Rev, 2003. 24(5): p. 600-32.
98. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10.
99. Ribatti, D., Endogenous inhibitors of angiogenesis: a historical review. Leuk Res, 2009. 33(5): p. 638-44.
100. Kazerounian, S., K.O. Yee, and J. Lawler, Thrombospondins in cancer. Cell Mol Life Sci, 2008. 65(5): p. 700-12.
101. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8.
102. Nyberg, P., L. Xie, and R. Kalluri, Endogenous inhibitors of angiogenesis. Cancer Res, 2005. 65(10): p. 3967-79.
103. Folkman, J., Angiogenesis. Annu Rev Med, 2006. 57: p. 1-18.
104. Cao, Y., Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 2010. 9(2): p. 107-15.
105. Seppinen, L., et al., Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing. Matrix Biol, 2008. 27(6): p. 535-46.
106. Raza, A., M.J. Franklin, and A.Z. Dudek, Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol, 2010. 85(8): p. 593-8.
107. Bergers, G. and S. Song, The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol, 2005. 7(4): p. 452-64.
108. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51.
109. Zumsteg, A. and G. Christofori, Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol, 2009. 21(1): p. 60-70.
110. Murdoch, C., et al., The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 2008. 8(8): p. 618-31.
111. De Palma, M., et al., Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 2007. 28(12): p. 519-24.
112. Ferrara, N., Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev, 2010. 21(1): p. 21-6.
113. Patenaude, A., J. Parker, and A. Karsan, Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res, 2010. 79(3): p. 217-23.
114. Kovacic, J.C. and M. Boehm, Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Res, 2009. 2(1): p. 2-15.
115. Lamagna, C. and G. Bergers, The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol, 2006. 80(4): p. 677-81.
116. Berx, G. and F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a003129.
117. Cavallaro, U. and G. Christofori, Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 2004. 4(2): p. 118-32.
118. Talmadge, J.E. and I.J. Fidler, AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res, 2010. 70(14): p. 5649-69.
119. Fidler, I.J., The pathogenesis of cancer metastasis: the ’seed and soil’ hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
120. Klymkowsky, M.W. and P. Savagner, Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol, 2009. 174(5): p. 1588-93.
121. Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer, 2009. 9(4): p. 265-73.
122. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
123. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 2009. 28(1-2): p. 15-33.
124. Barrallo-Gimeno, A. and M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 2005. 132(14): p. 3151-61.
125. Peinado, H., et al., Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci, 2004. 117(Pt 13): p. 2827-39.
126. Micalizzi, D.S., S.M. Farabaugh, and H.L. Ford, Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia, 2010. 15(2): p. 117-34.
127. Taube, J.H., et al., Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A, 2010. 107(35): p. 15449-54.
128. Schmalhofer, O., S. Brabletz, and T. Brabletz, E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 151-66.
129. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29.
130. Karnoub, A.E. and R.A. Weinberg, Chemokine networks and breast cancer metastasis. Breast Dis, 2006. 26: p. 75-85.
131. Brabletz, T., et al., Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A, 2001. 98(18): p. 10356-61.
132. Hlubek, F., et al., Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer, 2007. 121(9): p. 1941-8.
133. Egeblad, M., E.S. Nakasone, and Z. Werb, Tumors as organs: complex tissues that interface with the entire organism. Dev Cell, 2010. 18(6): p. 884-901.
134. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52.
135. Kalluri, R. and M. Zeisberg, Fibroblasts in cancer. Nat Rev Cancer, 2006. 6(5): p. 392-401.
136. Karnoub, A.E., et al., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007. 449(7162): p. 557-63.
137. Palermo, C. and J.A. Joyce, Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci, 2008. 29(1): p. 22-8.
138. Mohamed, M.M. and B.F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 2006. 6(10): p. 764-75.
139. Gocheva, V., et al., IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 2010. 24(3): p. 241-55.
140. Wyckoff, J.B., et al., Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res, 2007. 67(6): p. 2649-56.
141. Hugo, H., et al., Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol, 2007. 213(2): p. 374-83.
142. Friedl, P. and K. Wolf, Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res, 2008. 68(18): p. 7247-9.
143. Friedl, P. and K. Wolf, Plasticity of cell migration: a multiscale tuning model. J Cell Biol, 2010. 188(1): p. 11-9.
144. Madsen, C.D. and E. Sahai, Cancer dissemination--lessons from leukocytes. Dev Cell, 2010. 19(1): p. 13-26.
145. Sabeh, F., R. Shimizu-Hirota, and S.J. Weiss, Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol, 2009. 185(1): p. 11-9.
146. Campbell, P.J., et al., The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010. 467(7319): p. 1109-13.
147. Luebeck, E.G., Cancer: Genomic evolution of metastasis. Nature, 2010. 467(7319): p. 1053-5.
148. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467(7319): p. 1114-7.
149. McGowan, P.M., J.M. Kirstein, and A.F. Chambers, Micrometastatic disease and metastatic outgrowth: clinical issues and experimental approaches. Future Oncol, 2009. 5(7): p. 1083-98.
150. Aguirre-Ghiso, J.A., Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer, 2007. 7(11): p. 834-46.
151. Townson, J.L. and A.F. Chambers, Dormancy of solitary metastatic cells. Cell Cycle, 2006. 5(16): p. 1744-50.
152. Demicheli, R., et al., The effects of surgery on tumor growth: a century of investigations. Ann Oncol, 2008. 19(11): p. 1821-8.
153. Barkan, D., J.E. Green, and A.F. Chambers, Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer, 2010. 46(7): p. 1181-8.
154. Naumov, G.N., et al., Tumor-vascular interactions and tumor dormancy. APMIS, 2008. 116(7-8): p. 569-85.
155. Kenific, C.M., A. Thorburn, and J. Debnath, Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol, 2010. 22(2): p. 241-5.
156. Teng, M.W., et al., Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol, 2008. 84(4): p. 988-93.
157. Gupta, G.P., et al., Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol, 2005. 70: p. 149-58.
158. Peinado, H., S. Lavotshkin, and D. Lyden, The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol, 2011. 21(2): p. 139-46.
159. Coghlin, C. and G.I. Murray, Current and emerging concepts in tumour metastasis. J Pathol, 2010. 222(1): p. 1-15.
160. Klein, C.A., Parallel progression of primary tumours and metastases. Nat Rev Cancer, 2009. 9(4): p. 302-12.
161. Gerhardt, H. and H. Semb, Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl), 2008. 86(2): p. 135-44.
162. Kim, M.Y., et al., Tumor self-seeding by circulating cancer cells. Cell, 2009. 139(7): p. 1315-26.
163. Negrini, S., V.G. Gorgoulis, and T.D. Halazonetis, Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol, 2010. 11(3): p. 220-8.
164. Luo, J., N.L. Solimini, and S.J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction. Cell, 2009. 136(5): p. 823-37.
165. Colotta, F., et al., Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 2009. 30(7): p. 1073-81.
166. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
167. Kastan, M.B., DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture. Mol Cancer Res, 2008. 6(4): p. 517-24.
168. Sigal, A. and V. Rotter, Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res, 2000. 60(24): p. 6788-93.
169. Lane, D.P., Cancer. p53, guardian of the genome. Nature, 1992. 358(6381): p. 15-6.
170. Berdasco, M. and M. Esteller, Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell, 2010. 19(5): p. 698-711.
171. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007. 8(4): p. 286-98.
172. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683-92.
173. Salk, J.J., E.J. Fox, and L.A. Loeb, Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol, 2010. 5: p. 51-75.
174. Kinzler, K.W. and B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 1997. 386(6627): p. 761, 763.
175. Ciccia, A. and S.J. Elledge, The DNA damage response: making it safe to play with knives. Mol Cell, 2010. 40(2): p. 179-204.
176. Harper, J.W. and S.J. Elledge, The DNA damage response: ten years after. Mol Cell, 2007. 28(5): p. 739-45.
177. Friedberg, E.C., et al., DNA repair: from molecular mechanism to human disease. DNA Repair (Amst), 2006. 5(8): p. 986-96.
178. Barnes, D.E. and T. Lindahl, Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet, 2004. 38: p. 445-76.
179. Korkola, J. and J.W. Gray, Breast cancer genomes--form and function. Curr Opin Genet Dev, 2010. 20(1): p. 4-14.
180. Dvorak, H.F., Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 1986. 315(26): p. 1650-9.
181. DeNardo, D.G., P. Andreu, and L.M. Coussens, Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev, 2010. 29(2): p. 309-16.
182. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14.
183. Warburg, O., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 269-70.
184. Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009. 23(5): p. 537-48.
185. DeBerardinis, R.J., et al., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008. 7(1): p. 11-20.
186. Hsu, P.P. and D.M. Sabatini, Cancer cell metabolism: Warburg and beyond. Cell, 2008. 134(5): p. 703-7.
187. Kennedy, K.M. and M.W. Dewhirst, Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol, 2010. 6(1): p. 127-48.
188. Feron, O., Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol, 2009. 92(3): p. 329-33.
189. Semenza, G.L., Tumor metabolism: cancer cells give and take lactate. J Clin Invest, 2008. 118(12): p. 3835-7.
190. Semenza, G.L., Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010. 29(5): p. 625-34.
191. Kroemer, G. and J. Pouyssegur, Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell, 2008. 13(6): p. 472-82.
192. Semenza, G.L., HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev, 2010. 20(1): p. 51-6.
193. Hardee, M.E., et al., Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med, 2009. 9(4): p. 435-41.
194. Vajdic, C.M. and M.T. van Leeuwen, Cancer incidence and risk factors after solid organ transplantation. Int J Cancer, 2009. 125(8): p. 1747-54.
195. Pichler, K., et al., Strong induction of 4-1BB, a growth and survival promoting costimulatory receptor, in HTLV-1-infected cultured and patients’ T cells by the viral Tax oncoprotein. Blood, 2008. 111(9): p. 4741-51.
196. Kim, R., M. Emi, and K. Tanabe, Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007. 121(1): p. 1-14.
197. Ferrone, C. and G. Dranoff, Dual roles for immunity in gastrointestinal cancers. J Clin Oncol, 2010. 28(26): p. 4045-51.
198. Smyth, M.J., G.P. Dunn, and R.D. Schreiber, Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol, 2006. 90: p. 1-50.
199. Bindea, G., et al., Natural immunity to cancer in humans. Curr Opin Immunol, 2010. 22(2): p. 215-22.
200. Nelson, B.H., The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev, 2008. 222: p. 101-16.
201. Pages, F., et al., Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 2010. 29(8): p. 1093-102.
202. Strauss, D.C. and J.M. Thomas, Transmission of donor melanoma by organ transplantation. Lancet Oncol, 2010. 11(8): p. 790-6.
203. Yang, L., Y. Pang, and H.L. Moses, TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol, 2010. 31(6): p. 220-7.
204. Shields, J.D., et al., Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science, 2010. 328(5979): p. 749-52.
205. Mougiakakos, D., et al., Regulatory T cells in cancer. Adv Cancer Res, 2010. 107: p. 57-117.
206. Ostrand-Rosenberg, S. and P. Sinha, Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol, 2009. 182(8): p. 4499-506.
207. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-51.
208. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
209. Morel, A.P., et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 2008. 3(8): p. e2888.
210. Creighton, C.J., et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13820-5.
211. Buck, E., et al., Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther, 2007. 6(2): p. 532-41.
212. Cho, R.W. and M.F. Clarke, Recent advances in cancer stem cells. Curr Opin Genet Dev, 2008. 18(1): p. 48-53.
213. Lobo, N.A., et al., The biology of cancer stem cells. Annu Rev Cell Dev Biol, 2007. 23: p. 675-99.
214. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
215. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.
216. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
217. Gilbertson, R.J. and J.N. Rich, Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer, 2007. 7(10): p. 733-6.
218. Boiko, A.D., et al., Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 2010. 466(7302): p. 133-7.
219. Gupta, P.B., C.L. Chaffer, and R.A. Weinberg, Cancer stem cells: mirage or reality? Nat Med, 2009. 15(9): p. 1010-2.
220. Quintana, E., et al., Efficient tumour formation by single human melanoma cells. Nature, 2008. 456(7222): p. 593-8.
221. Brabletz, T., et al., Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer, 2005. 5(9): p. 744-9.
222. Soda, Y., et al., Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A, 2011. 108(11): p. 4274-80.
223. El Hallani, S., et al., A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain, 2010. 133(Pt 4): p. 973-82.
224. Ricci-Vitiani, L., et al., Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010. 468(7325): p. 824-8.
225. Wang, R., et al., Glioblastoma stem-like cells give rise to tumour endothelium. Nature, 2010. 468(7325): p. 829-33.
226. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
227. Pasquale, E.B., Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer, 2010. 10(3): p. 165-80.
228. Ahmed, Z. and R. Bicknell, Angiogenic signalling pathways. Methods Mol Biol, 2009. 467: p. 3-24.
229. Dejana, E., et al., Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res, 2009. 335(1): p. 17-25.
230. Tammela, T. and K. Alitalo, Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010. 140(4): p. 460-76.
231. Gaengel, K., et al., Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol, 2009. 29(5): p. 630-8.
232. Pietras, K. and A. Ostman, Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res, 2010. 316(8): p. 1324-31.
233. Coffelt, S.B., et al., Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol, 2010. 176(4): p. 1564-76.
234. Karin, M., T. Lawrence, and V. Nizet, Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 2006. 124(4): p. 823-35.
235. Schafer, M. and S. Werner, Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 2008. 9(8): p. 628-38.
236. Dirat, B., et al., Unraveling the obesity and breast cancer links: a role for cancer-associated adipocytes? Endocr Dev, 2010. 19: p. 45-52.
237. Rasanen, K. and A. Vaheri, Activation of fibroblasts in cancer stroma. Exp Cell Res, 2010. 316(17): p. 2713-22.
238. Shimoda, M., K.T. Mellody, and A. Orimo, Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol, 2010. 21(1): p. 19-25.
239. Bergfeld, S.A. and Y.A. DeClerck, Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev, 2010. 29(2): p. 249-61.
240. Fang, S. and P. Salven, Stem cells in tumor angiogenesis. J Mol Cell Cardiol, 2011. 50(2): p. 290-5.
241. Giaccia, A.J. and E. Schipani, Role of carcinoma-associated fibroblasts and hypoxia in tumor progression. Curr Top Microbiol Immunol, 2010. 345: p. 31-45.
242. Gerber, D.E., Targeted therapies: a new generation of cancer treatments. Am Fam Physician, 2008. 77(3): p. 311-9.
243. Aggarwal, S., Targeted cancer therapies. Nat Rev Drug Discov, 2010. 9(6): p. 427-8.
244. Folkman, J. and R. Kalluri, Cancer without disease. Nature, 2004. 427(6977): p. 787.
245. Azam, F., S. Mehta, and A.L. Harris, Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer, 2010. 46(8): p. 1323-32.
246. Ebos, J.M., C.R. Lee, and R.S. Kerbel, Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res, 2009. 15(16): p. 5020-5.
247. Bergers, G. and D. Hanahan, Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer, 2008. 8(8): p. 592-603.
248. Rosenberg, S.A., et al., Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer, 2008. 8(4): p. 299-308.
249. 山田慶兒, 中國古代醫學的形成. 東大 2003.
250. 陳奇, 中成藥名方藥理臨床. 北京:人民衛生出版社, 1998. 104(第一版).
251. Valdez, G., et al., Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A, 2010. 107(33): p. 14863-8.
252. 行政院衛生署, http://www.fda.gov.tw/TC/index.aspx.
253. Jemal, A., E. Ward, and M. Thun, Declining death rates reflect progress against cancer. PLoS One, 2010. 5(3): p. e9584.
254. Sawyers, C.L., Cancer: mixing cocktails. Nature, 2007. 449(7165): p. 993-6.
255. PU, U., Huang Di Nei Jing Su Wen: Nature, Knowledge, Imagery in an Ancient Chinese Medical Text University of California Press, 2003: p. 536.
256. Zhang Z, Y.F., Wiseman N, Mitchell C, Feng Y, Shang Han Lun: On Cold Damage, Translation and Commentaries Paradigm Publications., 1999: p. 746.
257. Sung, J.J., et al., Agreements among traditional Chinese medicine practitioners in the diagnosis and treatment of irritable bowel syndrome. Aliment Pharmacol Ther, 2004. 20(10): p. 1205-10.
258. Zhang, G.G., et al., The variability of TCM pattern diagnosis and herbal prescription on rheumatoid arthritis patients. Altern Ther Health Med, 2004. 10(1): p. 58-63.
259. Wiseman N, W.S., Ye F, Jin Gui Yao Lue – Essential Prescriptions of the Golden Coffer Paradigm Publications., Summer 2009. in press.
260. Harris, E.S., et al., Heavy metal and pesticide content in commonly prescribed individual raw Chinese Herbal Medicines. Sci Total Environ, 2011. 409(20): p. 4297-305.
261. Patwardhan, B., et al., Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med, 2005. 2(4): p. 465-73.
262. Lai, J.N., C.T. Wu, and J.D. Wang, Prescription pattern of chinese herbal products for breast cancer in taiwan: a population-based study. Evid Based Complement Alternat Med, 2012. 2012: p. 891893.
263. Lai, J.N., et al., Increased risk for invasive breast cancer associated with hormonal therapy: a nation-wide random sample of 65,723 women followed from 1997 to 2008. PLoS One, 2011. 6(10): p. e25183.
264. website., N., http://w3.nhri.org.tw/nhird/en/index.htm. Accessed
2011 Sep 17.
265. Wu FM, H.M., Collected Exegesis of Recipes, Wang Ang (1682). ACME Publishing, (in Chinese). 2001.
266. Hsieh, H.Y., P.H. Chiu, and S.C. Wang, Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complement Alternat Med, 2011. 2011: p. 816714.
267. Wang S-C, P.A., DNA Methylation Microarrays: Experimental Design and Statistical Analysis CRC Press. 2008: p. 256.
268. computing., R.D.C.T.R.A.l.a.e.f.s., (Vienna, Austria): R Foundation for Statistical Computing. ISBN 3-900051-07-0.
269. Yu, M.C. and J.M. Yuan, Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol, 2002. 12(6): p. 421-9.
270. Adamic, L., Complex systems: Unzipping Zipf’s law. Nature, 2011. 474(7350): p. 164-5.
271. LiShizhen, (1578) Ben Cao Gang Mu. Beijing: People Hygiene Publishing House,, 1982.
272. Available: http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm. Accessed 2011 Sep 1.
273. Cuzick, J., et al., Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol, 2009. 10(5): p. 501-7.
274. Friis, S., et al., Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal cancer: a Danish cohort study. Cancer Causes Control, 2009. 20(5): p. 731-40.
275. Chen, Z. and P. Wang, Clinical Distribution and Molecular Basis of Traditional Chinese Medicine ZHENG in Cancer. Evid Based Complement Alternat Med, 2012. 2012: p. 783923.
276. Cheng, C.W., et al., The Quintessence of Traditional Chinese Medicine: Syndrome and Its Distribution among Advanced Cancer Patients with Constipation. Evid Based Complement Alternat Med, 2012. 2012: p. 739642.
277. Sweatt, J.D., Neuroscience. Epigenetics and cognitive aging. Science, 2010. 328(5979): p. 701-2.
278. Wolffe, A.P., Chromatin remodeling: why it is important in cancer. Oncogene, 2001. 20(24): p. 2988-90.
279. Cedar, H. and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet, 2009. 10(5): p. 295-304.
280. Deng, G., et al., Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer. Int J Cancer, 2006. 118(12): p. 2999-3005.
281. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N Engl J Med, 2013.
282. Minucci, S. and P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer, 2006. 6(1): p. 38-51.
283. Chai, G., et al., HDAC inhibitors act with 5-aza-2’-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS One, 2008. 3(6): p. e2445.
指導教授 王孫崇(Sun-chong Wang) 審核日期 2013-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明