博碩士論文 100521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.117.229.191
姓名 林彥廷(Yan-Ting Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 串接耦合量子點之熱整流特性
(thermal rectification properties of serially coupled quantum dots)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們藉由Hubbard模型和Anderson模型探討嵌入串接耦合量子點的奈米線之熱整流特性。並藉由凯帝旭格林函數的技術推導在庫倫阻斷區間流經量子點奈米線的穿隧電流與熱流之公式。我們在電極與量子點間設計一層真空層降低聲子的效應,藉此探討由電子形成的熱整流特性。相較於在平行量子點接面的熱整流特性,我們發現串接耦合量子點的接面系統,熱整流機制是有所不同。我們也依序探討了量子點尺寸大小以及量子點位置對串接耦合量子點的熱整流特性的影響。我們證明了要在串接耦合量子點系統中觀察到熱整流的發生,尺寸擾動產生的量子點能階差異以及Seebeck effect產生的熱電壓所造成的能階偏移是必須的。
摘要(英) In this thesis, we have theoretically investigated the thermal rectification properties of serially coupled quantum dots (SCQDs) embedded in a nanowire connected to metallic electrodes by the Hubbard model and the Anderson model. The charge and heat currents in the Coulomb blockade regime are calculated by the Keldysh-Green function technique. We design a vacuum layer between metallic electrode and quantum dots to block the contribution of phonon transport and investigate the thermal rectification properties of electron transport. Compared with the case of parallel quantum dots (PQDs), the thermal rectification mechanism of SCQDs is different from that of PQDs. We also study the effects of quantum dot size and quantum dot location on thermal rectification properties of SCQDs. We have demonstrated that the thermal rectification properties can be observed in SCQDs in the absence of phonon heat current, where the energy level difference between dots and the energy level shift arising from the thermal voltage are required.
關鍵字(中) ★ 量子點
★ 熱整流特性
★ 熱電特性
★ 奈米結構
★ 塞貝克效應
關鍵字(英) ★ quantum dot
★ thermal rectification
★ thermoelectric
★ nanostructure
★ Seebeck effect
論文目次 第一章 導論 1
1-1 熱整流的簡介 1
1-2 熱整流發展進程 2
1-3 研究動機 5
第二章 系統模型 7
2-1 串接耦合量子點系統(SERIALLY COUPLED QUANTUM DOTS, SCQDS) 8
2-2 塞貝克效應(SEEBECK EFFECT) 15
2-3 電位勢差對量子點能階的偏移 17
第三章 熱整流效應 20
3-1 量子點系統內的熱整流現象 21
3-1-1 PQDs熱整流現象分析 22
3-1-2 SCQDs熱整流現象分析 25
3-1-3 PQDs與SCQDs的熱整流現象比較 30
3-2 量子點尺寸大小對於熱整流現象的影響 32
3-2-1 尺寸擾動(size fluctuation)對熱整流現象的影響 32
3-2-2 Detuning energy對熱整流現象的影響 36
3-3 量子點位置對於熱整流現象的影響 41
3-3-1 能階偏移係數對於熱整流現象的影響 42
3-3-2 電子躍遷強度與穿隧率對熱整流現象的影響 45
第四章 結論 48
參考文獻 51
參考文獻 [1] B. Li, L. Wang, and G. Casati, "Negative differential thermal resistance and thermal transistor", Appl. Phys. Lett. 88, 143501 (2006).
[2] L. Wang and B. Li, "Thermal Logic Gates: Computation with Phonons", Phys. Rev. Lett. 99, 177208 (2007).
[3] B. Norton and S. D. Probert, "Achieving Thermal Rectification in Natural-Circulation Solar-Energy Water Heaters ", Applied Energy 14, 211 (1983).
[4] A. A. MOHAMAD, "Integerated Solar Collector–Storage Tank System With Thermal Diode", Solar Energy 61, 211 (1997).
[5] A. M. Kolpak and J. C. Grossman, "Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels", Nano Lett. 11, 3156 (2011).
[6] C. Starr, "The Copper Oxide Rectifier", J. Appl. Phys. 7, 15 (1936).
[7] M. H. Barzelay, K. N. Tong, and G. F. Holloway, "Effect of pressure on thermal conductance of contact joints", NACA TN, 3295 (1955).
[8] A. M. Clausing, "Heat transfer at the interface of dissimiliar metals-The influence of thermal strain", Int. J. Heat Mass Transfer 9, 791 (1966).
[9] D. V. Lewis and H. C. Perkins, "Heat transfer at the interface of stainless steel and aluminum-The influence of surface conditions on the directional effect", Int. J. Heat Mass Transfer 11, 1371 (1968).
[10] P. W. O’Callaghan, S. D. Probert, and A. Jones, "A thermal rectifier", J. Phys. D: Appl. Phys. 3, 1352 (1970).
[11] C. Marucha, J. Mucha, and J. Rafalowicz, "Heat flow rectification in inhomogeneous GaAs", Physica Status Solidi A 31, 269 (1975).
[12] A. Jezowski and J. Rafalowicz, "Heat-flow asymmetry on a junction of quartz with graphite", Physica Status Solidi A 47, 229 (1978).
[13] K. Balcerek and T. Tyc, "Heat flux rectification in tin-α-brass system", Physica Status Solidi A 47, 125K (1978).
[14] N. A. Roberts and D. G. Walker, "A review of thermal rectification observations and models in solid materials", Int. J. Therm. Sci. 50, 648 (2011).
[15] H. Hoff, "Asymmetrical heat conduction in inhomogeneous materials", Physica A 131, 449 (1985).
[16] B. Hu, D. He, L. Yang, and Y. Zhang, "Thermal rectifying effect in macroscopic size", Phys. Rev. E 74, 060201 (2006).
[17] M. Peyrard, "The design of a thermal rectifier", Europhys. Lett. 76(1), 49 (2006).
[18] C. Dames, "Solid-state thermal rectification with existing bulk materials", J. Heat Transfer 131, 061301 (2009).
[19] D. B. Go and M. Sen, "On the Condition for Thermal Rectification Using Bulk Materials", J. Heat Transfer 132, 124502 (2010).
[20] M. Terraneo, M. Peyrard, and G. Casati, "Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier", Phys. Rev. Lett. 88, 094302 (2002).
[21] B. Li, L. Wang, and G. Casati, "Thermal diode: rectification of heat flux", Phys. Rev. Lett. 93, 184301 (2004).
[22] D. Segal and A. Nitzan, "Spin-boson thermal rectifier," Phys. Rev. Lett. 94, 034301 (2005).
[23] B. Hu, L. Yang, and Y. Zhang, "Asymmetric heat conduction in nonlinear lattices", Phys. Rev. Lett. 97, 124302 (2006).
[24] N. Zeng and J.-S. Wang, "Mechanisms causing thermal rectification: the influence of phonon frequency, asymmetry, and nonlinear interactions", Phys. Rev. B 78, 024305 (2008).
[25] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, "Solid-State Thermal Rectifier", Science 314, 1121 (2006).
[26] G. Wu and B. Li, "Thermal rectification in carbon nanotube intramolecular junctions: molecular dynamics calculations", Phys. Rev. B 76, 085424 (2007).
[27] M. Alaghemandi, F. Leroy, E. Algaer, M. Bohm, and F. Muller-Plathe, "Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations", Nanotechnology 21, 075704 (2010).
[28] J. Hu, X. Ruan, and Y. P. Chen, "Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study", Nano Lett. 9, 2730 (2009).
[29] N. Yang, G. Zhang, and B. Li, "Thermal rectification in asymmetric graphene ribbons", Appl. Phys. Lett. 95, 033107 (2009).
[30] M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, "A thermal diode using phonon rectification", New J. Phys. 13, 113027 (2011).
[31] T. Ruokola, T. Ojanen, and A.-P. Jauho, "Thermal rectification in nonlinear quantum circuits", Phys. Rev. B 79, 144036 (2009).
[32] R. Scheibner, M. Konig, D. Reuter, A. Weick, C. Gould, and H. Buhmann, "Quantum dot as thermal rectifier", New J. Phys. 10, 083016 (2008).
[33] D. M. T. Kuo and Y. C. Chang, "Thermoelectric and thermal rectification properties of quantum dot junctions", Phys. Rev. B 81, 205321 (2010).
[34] T. Ruokola and T. Ojanen, "Single-electron heat diode: Asymmetric heat transport between electronic reservoirs through Coulomb islands", Phys. Rev. B 83, 241404 (2011).
[35] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductions (Springer, Heidelberg, 1996).
[36] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, "Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System", Science 297, 1313 (2002).
[37] Y. Meir and N. S. Wingreen, "Landauer formula for the current through an interacting electron region", Phys. Rev. Lett. 68, 2512 (1992).
[38] D. M. T. Kuo and Y. C. Chang, "Electron tunneling rate in quantum dots under a uniform electric field", Phys. Rev. B 61, 11051 (2000).
[39] D. M. T. Kuo and Y. C. Chang, "Bipolar thermoelectric effect in a serially coupled quantum dot system ", Jpn. J. Appl. Phys. 50, 105003 (2011).
[40] Y.-C. Tseng and D. M.-T. Kuo, "Current Rectification and Seebeck Coefficient of Serially Coupled Double Quantum Dots", Jpn. J Appl. Phys. 52, 014002 (2013).
[41] D. M. T. Kuo, "Thermoelectric properties of double quantum dots embedded in a nanowire", Jpn. J. Appl. Phys. 50, 025003 (2011).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2013-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明