博碩士論文 943403024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.144.3.200
姓名 藍先進(Hsien-Chin Lan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超塑成形製程設計及模擬以製作機翼零件
(Conceiving and Numerically Simulating Various Superplastic Forming Processes for Making an Airplane Strakelet)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 常見的超塑成形製程多以平板直接吹氣成形,且成形形狀都呈簡易對稱之形狀,少有曲面複雜且幾何外型不對稱之實際工件製作。本論文主要以飛機製造業使用之鋁合金蒙皮零件“機翼前緣整流罩”為超塑成形之研究,所使用之材料為超塑性鋁合金5083,並將材料預折彎加工成V形板後再執行超塑成形。而材料在高溫環境中與模具壁的摩擦效應,將直接影響材料的變形趨勢,為此本論文利用長方形開口盒分析平板工件的成形趨勢,以套用至折彎預成形板材之變形趨勢。除折彎預成形製程外,並以預成形材折彎後之引伸製程、反吹製程、縮小版製程試製,在超塑成形過程中,應用計算壓力-時間成形曲線以控制吹氣壓力。
本論文亦使用有限元素套裝軟體ANSYS/LS-DYNA結合實驗,分析5083鋁合金鈑材之超塑成形製程,並探討機翼前緣整流罩最終厚度分布之影響,以驗證數值模擬分析之可行性與可靠度。ANSYS/LS-DYNA有限元素軟體能提供模具設計人員,在開發階段以數值模擬分析方法瞭解模具之幾何外形,並據以修改模具之外形輪廓,俾利減少測試次數及縮短產品開發時程以便降低成本。本論文以複雜曲面工件為例,所做之數值分析與吹氣超塑成形實驗比對,結果顯示兩者最終厚度分布趨於吻合,可有效預測吹氣超塑成形實驗,具相輔相成的效果。
摘要(英) Superplastic forming processes usually uses flat sheet to produce simple and symmetrical shapes, however, complicated and non-symmetrical shapes are rarely produced by using superplastic forming. This thesis focuses on using superplastic forming to manufacture the aluminum ” Airplane Fairing Cover” used on an actual commercial airliner. Using the superplastic aluminum alloy 5083, the material was processed into a V-shaped sheet. The Friction effect of between material and die wall in the high-temperature environment will influence the deformation trend of the material. So, this thesis utilizes the forming trend of the rectangle opening box, and then applies to deformation trend of bending preformed sheet. Also try the V-shaped sheet drawing forming process and reverse forming process. The pressure-time curves were calculated for commencing superplastic forming process.
This thesis also uses finite element software suite ANSYS/LS-DYNA to combine the experiment to analyze the superplastic forming process of 5083 aluminum alloy, and discuss the influence of the final thickness distributed of airplane fairing cover in order to verify the numerical simulation analyzed of feasibility and reliability. The ANSYS/LS-DYNA provides a useful tool for designer to understand the geometry appearance of the die in the design level, and reduces the trial tests and shortens the product development process in order to keep costs down. In this thesis, there are compare of numerical analysis and superplastic forming experiments. The results show both the final thickness distribution tends to be consistent. Therefore, the ANSYS/LS-DYNA is capable of predicting the superplastic forming experiment with complementary effects.
關鍵字(中) ★ V形板
★ 複雜曲面
★ 超塑成形
★ 壓力-時間曲線
★ 有限元素分析
關鍵字(英) ★ V-Shape Sheet
★ Irregular Contour Surface
★ Superplastic Forming
★ Pressure-Time Curve
★ Finite Element Analysis
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 xvi
符號說明 xvii
第一章: 緒論 1
1-1 前言 1
1-2 超塑成形概論 2
1-3 超塑成形製程回顧 4
1-4 研究動機 8
1-5 研究方法及步驟 10
第二章: 基本原理及實驗模擬設備 17
2-1 成型理論 17
2-1-1 超塑成形組成方程式 17
2-1-2 長形方盒壓力-時間計算理論 18
2-1-3 圓錐形體壓力-時間計算理論 20
2-2 空孔形成機制 22
2-2-1 空孔成核 22
2-2-2 空孔結合 23
2-3 實驗設備及材料 24
2-4 ANSYS/LS-DYNA有限元素分析軟體 27
第三章: 材料性值測定及長方形開口盒之超塑成形分析 44
3-1 長方形開口盒之成形材料變化趨勢 44
3-2 長方形開口盒之壓力-時間成形曲線計算 46
3-3 LS-DYNA軟體氣吹成形參數設定 48
3-4 成形材料之材料性值測定 53
3-5 長方形開口盒試驗結果與電腦模擬討論 55
第四章: 複雜曲面工件之超塑成形製程分析 69
4-1 複雜曲面工件之成形形狀 69
4-1-1 複雜曲面工件之幾何形狀 69
4-1-2 複雜曲面工件模具配件之位置 70
4-1-3 複雜曲面工件之檢測標準 71
4-2 複雜曲面工件之製程分析 78
4-2-1 折彎預成形之超塑成形方法 78
4-2-2 折彎預成形+引伸沖壓之超塑成形方法 80
4-2-3 折彎預成形+兩階段氣壓超塑成形之方法 83
4-3 複雜曲面工件之壓力-時間成形曲線計算 94
4-3-1 複雜曲面工件之壓力-時間計算推導 94
4-3-2 折彎預成形之超塑成形之壓力-時間成形曲線 102
4-3-3 折彎預成形+引伸製程之超塑成形之壓力-時間成形曲線 103
4-3-4 折彎預成形+兩階段氣壓超塑成形之壓力-時間成形曲線 103
4-4複雜曲面工件試驗結果與電腦模擬討論 109
4-4-1 V型折彎之超塑成形製程試驗結果與電腦模擬討論 109
4-4-2 V型折彎+引伸製程之超塑成形製程試驗與電腦模擬結果討論 112
4-4-3 V型折彎+兩階段氣壓超塑成形製程之試驗結果與電腦模擬討論 118
4-4-4 V型折彎+雙峰等高之超塑成形電腦模擬及分析 122
4-4-5 縮小版雙峰等高之超塑成形製程之試驗結果與電腦模擬討論 124
第五章: 結論 158
參考文獻 162
參考文獻 1. F. Yang and W. Yang, Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions, Scripta Materialia, 2009, 61, p. 919-922.
2. C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, and J.C. Huang, Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing, Materials Characterization, 2010, 61, p. 1043-1053.
3. H. Raman, G. Luckey, G. Kridli, and P. Friedman, Development of Accurate Constitutive Models for Simulation of Superplastic Forming, Journal of Materials Engineering and Performance, 2007, 16, p. 284-292.
4. Fukaya-Sky, Superplastic 5083 alloy "ALNOVI-1", SKY Aluminium Co., LTD., 1994, p. 1-9.
5. D.G. Sanders, The Current State-of-the Art and the Future of in Airframe manufacturing using Superplastic Forming Technology, 2001: Materials Science Forum, 357-359, p. 17-22.
6. Z. Zeng, Y. Zhang, Y. Zhou, and Q. Jin, Superplastic Forming of Aluminum Alloy Car Body Panels, Materials Science Forum, 2005, 475-479, p. 3025-3028.
7. Y. Luo, S.G. Luckey, W.B. Copple, and P.A. Friedman, Comparison of Advanced SPF Die Technologies in the Forming of a Production Panel, Journal of Materials Engineering and Performance, 2008, 17, p. 142-152.
8. L. Hefti, Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet, Journal of Materials Engineering and Performance, 2007, 16, p. 136-141.
9. 林維帥, 熱引伸輔助超塑成形製作機翼整流罩之設計及分析, 國立中央大學機械工程研究所碩士論文, 2012, p. 12.
10. 劉亞倫, 超塑性鋁合金5083快速成形之空孔與金相組織研究, 國立中央大學機械工程研究所碩士論文, 2001, p. 72.
11. M.A. Khaleel, H.M. Zbib, and E.A. Nyberg, Constitutive modeling of deformation and damage in superplastic materials, International Journal of Plasticity, 2001, 17, p. 277-296.
12. Y.-M. Hwang, J.-S. Yang, T.-R. Chen, J.C. Huang, and W.-U. Wu, Analysis of superplastic blow-forming in a conical closed die, International Journal of Mechanical Sciences, 1998, 40, p. 867-885.
13. P. Krajewski and A. Morales, Tribological issues during quick plastic forming, Journal of Materials Engineering and Performance, 2004, 13, p. 700-709.
14. P.-h. Sun, H.-y. Wu, W.-s. Lee, S.-h. Shis, J.-y. Perng, and S. Lee, Cavitation behavior in superplastic 5083 Al alloy during multiaxial gas blow forming with lubrication, International Journal of Machine Tools and Manufacture, 2009, 49, p. 13-19.
15. Z. Chen and P.F. Thomson, Friction against superplastic aluminium alloys, Wear, 1996, 201, p. 227-232.
16. Y. Luo, S.G. Luckey, P.A. Friedman, and Y. Peng, Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation, International Journal of Machine Tools and Manufacture, 2008, 48, p. 1509-1518.
17. J. Liu, M.-J. Tan, Y. Aue-u-lan, A.W. Jarfors, K.-S. Fong, and S. Castagne, Superplastic-like forming of non-superplastic AA5083 combined with mechanical pre-forming, The International Journal of Advanced Manufacturing Technology, 2011, 52, p. 123-129.
18. L.M. Ren, S.H. Zhang, G. Palumbo, D. Sorgente, and L. Tricarico, Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets, Materials Science and Engineering: A, 2009, 499, p. 40-44.
19. H. Palaniswamy, G. Ngaile, and T. Altan, Finite element simulation of magnesium alloy sheet forming at elevated temperatures, Journal of Materials Processing Technology, 2004, 146, p. 52-60.
20. G. Luckey Jr, P. Friedman, and K. Weinmann, Design and experimental validation of a two-stage superplastic forming die, Journal of Materials Processing Technology, 2009, 209, p. 2152-2160.
21. G. Yaofu, G. Naicheng, Z. Daren, and H. Mancai, The superplastic forming of metal sheets using a die of refractory concrete, Journal of Materials Processing Technology, 1992, 30, p. 159-166.
22. A.K. Ghosh and C.H. Hamilton, Superplastic Forming of a Long Rectangular Box Section -- Analysis and Experiment, Rockwell International, Thousand Oaks, California, 1979, p. 245-273.
23. M. Vulcan, K. Siegert, and D. Banabic, The Influence of Pulsating Strain Rates on the Superplastic Deformation Behaviour of Al-Alloy AA5083 Investigated by Means of Cone Test, Materials Science Forum, 2004, 447-448, p. 139-144.
24. D. Banabic, M. Vulcan, and K. Siegert, Bulge Testing under Constant and Variable Strain Rates of Superplastic Aluminium Alloys, CIRP Annals - Manufacturing Technology, 2005, 54, p. 205-208.
25. N. Chandra and D. Kannan, Superplastic sheet metal forming of a generalized cup part i: uniform thinning, Journal of Materials Engineering and Performance, 1992, 1, p. 801-810.
26. L. Carrino and G. Giuliano, Modelling of superplastic blow forming, International Journal of Mechanical Sciences, 1997, 39, p. 193-199.
27. Y. Chen, K. Kibble, R. Hall, and X. Huang, Numerical analysis of superplastic blow forming of Ti–6Al–4V alloys, Materials & Design, 2001, 22, p. 679-685.
28. R. Hambli, A. Potiron, F. Guerin, and B. Dumon, Numerical pressure prediction algorithm of superplastic forming processes using 2D and 3D models, Journal of Materials Processing Technology, 2001, 112, p. 83-90.
29. R. Hambli and A. Potiron, Comparison between 2D and 3D numerical modeling of superplastic forming processes, Computer Methods in Applied Mechanics and Engineering, 2001, 190, p. 4871-4880.
30. P. Hu, Y.Q. Liu, Y.X. Li, and J. Lian, Rigid viscoplastic finite element analysis of the gas-pressure constrained bulging of superplastic circular sheets into cone disk shape dies, International Journal of Mechanical Sciences, 1997, 39, p. 487-496.
31. P.K.D.V. Yarlagadda, P. Gudimetla, and C. Adam, Finite element analysis of high strain rate superplastic forming (SPF) of Al–Ti alloys, Journal of Materials Processing Technology, 2002, 130–131, p. 469-476.
32. G.Y. Li, M.J. Tan, and K.M. Liew, Three-dimensional modeling and simulation of superplastic forming, Journal of Materials Processing Technology, 2004, 150, p. 76-83.
33. S.G. Luckey Jr, P.A. Friedman, and K.J. Weinmann, Correlation of finite element analysis to superplastic forming experiments, Journal of Materials Processing Technology, 2007, 194, p. 30-37.
34. F.S. Jarrar, L.G. Hector Jr, M.K. Khraisheh, and A.F. Bower, New approach to gas pressure profile prediction for high temperature AA5083 sheet forming, Journal of Materials Processing Technology, 2010, 210, p. 825-834.
35. S. Kalpakjian, Manufacturing Processes for Engineering Materials, Journal of Applied Metalworking, 1985, 3, p. 446.
36. 王善民, Ti-6Al-4V之超塑性成形製程模擬與分析, 國立中央大學機械工程研究所碩士論文, 2003, p. 22.
37. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, and C. Kim, Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet, Metallurgical and Materials Transactions A, 1996, 27, p. 1889-1898.
38. X. Jiang, J. Cui, and L. Ma, An Experimental Study of Cavity Nucleation During Superplastic Deformation, Material Research Society, 1990, 196, p. 51-56.
39. H.-y. Wu, J.-y. Perng, S.-h. Shis, C.-h. Chiu, S. Lee, and J.-y. Wang, Cavitation characteristics of a superplastic 5083 Al alloy during gas blow forming, Journal of Materials Science, 2006, 41, p. 7446-7453.
40. S. Kalpakjian and S.R. Schmid, Manufacturing Engineering and Technology, Pearson Prentice Hall, 2006, p. 446.
41. MatWeb, MATERIAL PROPERTY DATA. Available from: http://www.matweb.com/.
42. N. Chandra, Constitutive behavior of superplastic materials, International Journal of Non-Linear Mechanics, 2002, 37, p. 461-484.
43. J.G. Kaufman, Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Dada at High and Low Temperatures, ASM International, 2006, p. 131.
44. T.H. Courtney, Mechanical Behavior of Materials, McGraw-Hill, 2000, p. 56.
指導教授 李雄(Shyong Lee) 審核日期 2013-6-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明