博碩士論文 100322066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.190.156.80
姓名 李勝雄(Sheng-shiung Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 建築物屋頂上太陽能板的風力負載
(Wind Load of the Solar Panel on Flat Building Roofs)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來人們開始利用屋頂裝設風機與太陽能板來獲得再生能源。本篇研究使用風洞實驗探討太陽能板在平屋頂的建築物上的風力負載。在兩種不同的入流下,分別量測了建築物在不同風向角下,屋頂上方的速度流場與壓力分佈。結果顯示屋頂上方最大紊流強度發生於高度z/Hb = 1.1至1.2處。鑒於前人對於在屋頂上太陽能板的研究,本篇論文透過風洞實驗改變建築物風向角、女兒牆高度及太陽能板座向角來研究平頂建築物上方太陽能板的風力負載。實驗結果顯示:當風向角為0o時,屋頂最大負壓發生於建築物屋頂前緣,而女兒牆可減低建築物屋頂前緣的負壓力約15 ~ 25%。當風向角為45o,女兒牆可減低建築物屋頂角隅的負壓力約20 ~ 25%。當屋頂無女兒牆的狀況下,風向角為0o及45o時,太陽能板所受的升力向下,風向角為180o及225o時,太陽能板所受的升力向上。不論風向為何,太陽能板的高度愈高,其所受的淨風壓係數的絕對值愈大。當屋頂裝設女兒牆後,太陽能板所受的淨風壓係數皆大幅減小。
摘要(英) Nowadays people started to install wind turbine and solar panel to gain renewable energy. This study used wind tunnel to investigate the aerodynamic loading on the solar panel installed on flat building roofs. The turbulent velocity and pressure distribution on the building roof were measured in two different approaching flows. The maximum turbulence intensity occurred at height z/Hb = 1.1 to 1.2. This study also investigated the influences of wind direction, parapet height on the aerodynamic loading of the solar panel. The flow conditions include three different panel heights, two panel orientations and four wind directions. For the pressure on the building roof, the maximum negative pressure occurred at the leading edge when wind direction  = 0o. The roof parapet, due to the shelter effect, can reduce the time-averaged corner pressure 15 ~ 25%. For wind direction  = 45o, the parapet can reduce the pressure 20 ~ 25%. For the aerodynamic loading of the solar panel on building without parapet, the net pressure on the solar panel increases as the panel height increases. The worst case (maximum aerodynamic loading) occurred when the wind direction is 225o and the orientation of the panel with the building is 45o (wind is normal to the lower side of the panel). For solar panel with the parapet, the net pressure coefficient of the solar panel is smaller than that of without the parapet.
關鍵字(中) ★ 太陽能板
★ 風力負載
★ 建築物屋頂
★ 女兒牆
★ 風洞實驗
關鍵字(英) ★ solar panel
★ wind load
★ building roof
★ parapet
★ wind tunnel experiment
論文目次 Abstract Ⅰ
Contents Ⅲ
Notation Ⅳ
Table captions Ⅵ
Figure captions Ⅶ
1. Introduction 1
2. Experimental setup 3
2.1 Velocity measurement 4
2.2 Pressure measurement 5
3. Results and discussion 5
3.1 Velocity above the building roof 5
3.2 Pressure on the building surface 7
3.3 Pressure on the solar panel 9
4. Conclusions 12
References 14
Tables 15
Figures 22
Appendix 66
參考文獻 Chen, R.H., Bao, K., Zeng, L., Li, M.Y., 2012. A preliminary study of wind pressure on solar panel installed on gable roofs. Journal of Interior and Architectural Design 13, 13-20. (in Chinese)
Chung, K., Chang, K., Liu, Y., 2008. Reduction of wind uplift of a solar collector model. Journal of Wind Engineering and Industrial Aerodynamics 96 (8-9), 1294–1306.
Meroney, R.N., Neff, D.E., 2010. Wind effects on roof-mounted solar photovoltaic arrays: CFD and wind-tunnel evaluation. The Fifth International Symposium on Computational Wind Engineering, Chapel Hill, North Carolina, USA, May 23-27.
Kawai, H., Okuda, Y., Ohashi, M., 2012. Structure of conical vortex on and behind a cube in smooth and turbulent flows. The 7th International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China.
Kono, T., and Kogaki, T. 2012. Numerical investigation of the wind conditions over a rectangular prism-shaped building for mounting small wind turbines. Wind Engineering, 36(2), 111-122.
Kopp, G.A., Farquhar, S. Morrison, M.J., 2012. Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays. Journal of Wind Engineering and Industrial Aerodynamics 111, 40-52.
Kopp, G.A., and Banks, D.B., 2013. Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays. Journal of Structural Engineering, ASCE. 139 (2), 284-287.
Peterka, J.A., 1983. Selection of local peak pressure coefficients for wind tunnel studies of buildings, Journal of Wind Engineering and Industrial Aerodynamics 13; 477-488.
Pfahl, A., and Uhlemann, H., 2011. Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers. Journal of Wind Engineering and Industrial Aerodynamics 99; 964-968.
Radu, A., Axinte, E., Theohari, C., 1986. Steady wind pressures on solar collectors on flat-roofed buildings, Journal of Wind Engineering and Industrial Aerodynamics 23; 249-258.
Suaris, W., Irwin P., 2010. Effect of roof-edge parapets on mitigating extreme roof suctions, Journal of Wind Engineering and Industrial Aerodynamics 98; 483-491.
Wang, P.-W., 2012. Experimental Study of Natural Ventilation in Multi-Floor Buildings, Master thesis for the Department of Civil Engineering, National Central University.
指導教授 朱佳仁 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明