博碩士論文 100324038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.145.115.45
姓名 張揚廷(Yang-ting Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構
(Self-Assembled Nanostructures in Solvent-Annealed Block Copolymer Thin Films)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主題為利用旋鍍方式,製備聚苯乙烯聚氧化乙烯(poly(styrene-block-ethylene oxide), P(S-b-EO))團鏈共聚合物薄膜,探討其共溶劑退火下奈米結構型態。首先將先探討事前利用水氣與醇類進行pre-annealing的步驟,對於團鏈共聚物中兩鏈段之影響差異。由於極性溶劑先膨潤PEO鏈段,增強兩鏈段間的分離強度(因聚苯乙烯為一疏水性鏈段,不會受水氣膨潤而維持在玻璃態,反之,親水性的PEO鏈段將受到水氣膨潤,大幅降低兩鏈段間的相容性,意味著增強了兩鏈段間的分離強度),此後在恆溫17 oC下進行有機溶劑退火程序,以非極性溶劑—苯為例,加入pre-annealing步驟的實驗組可得到長程有序的球相結構薄膜,反觀之,直接進行苯蒸氣退火程序的對照組卻為一紊亂無序的球相結構薄膜,後者原因在於退火過程中,苯蒸氣仍會輕微膨潤PEO鏈段,造成團鏈共聚物的分離強度下降,因此得到無序球陣列結構。
隨後將介紹共溶劑退火之影響系統,同樣先利用極性溶劑膨潤薄膜後(如同上述,藉由水氣預先膨潤的步驟以利提高鏈段間的分離強度後),於恆溫17 oC下,採用非極性(苯、四氫呋喃)搭配極性(水、醇類)溶劑之數種組合進行共溶劑退火程序,在四氫呋喃系統中,與低碳數醇類溶劑(甲醇、乙醇)進行共溶劑退火的薄膜奈米結構,由於低碳數的極性溶劑具有較高的蒸氣壓,於高膨潤程度的共溶劑系統下,結構從無序球相結構直接變為無序圓柱結構;在高碳數醇類溶劑系統中(丙醇、丁醇、正己醇),經由低膨潤效果的退火程序,發現不易直接轉變成圓柱相,以能量觀點而言,推測此轉變過程中衍生一有序的球相態(meta-stable state),須越過此能障方能轉變為有序的平行圓柱相(stable state)。相較於四氫呋喃系統,苯具有較差的膨潤效果(Psat,benzene < Psat,THF),與低碳數醇類溶劑(甲醇、乙醇)會形成無序圓柱相,而與高碳數醇類溶劑(丙醇、丁醇、正己醇)則會形成有序球相。
此外,我們發現當極性溶劑為水與時,在17 oC下與非極性溶劑退火皆得到球相結構。我們嘗試將溫度下降於12oC下,發現雖然在低溫時χ值增加,不過仍得不到球相結構。因此我們利用非極性溶劑為四氫呋喃,極性溶劑為丙醇共溶劑退火,我們發現在20oC下三小時,結構為球與圓柱共存,不過當共溶劑退火到五小時,發現結構變為球相結構,因此,證實說在高溫,雖然蒸氣壓增加,不過因為χ值下降,因此結構變為球相結構,也證實說當極性溶劑為水的系統,因χ值低而得不到圓柱結構。而我們利用相同體積分率,分子量為兩倍的PS-b-PEO,在四氫呋喃與水退火三小時得到平行無序圓柱結構,證實為分離強度的影響。
摘要(英) In this study, I have investigated the micro-phase separated structures of solvent annealed PS-b-PEO thin films in mixed vapors of binary nonpolar/polar solvents. Before solvent annealing, the surface morphology of as-spun films was dominated by disordered spheres. First, polar-solvents were used to preferentially swell PEO chains, by which the segregation strength between the two segments can be enhanced. This stage is called as a “pre-annealing” step. Then the vapor of nonpolar solvents (benzene or THF) was used for annealing thin films at 17 °C. After solvent annealing, the surface morphology was dominated by hexagonal arrays of spheres. By contrast, if thin films were directly exposed to the vapor of benzene or THF without undergoing the pre-annealing step, the surface morphology was dominated by disordered spheres. The reason is that benzene or THF vapor also swelled the PEO domain in addition to swelling the PS domain. This reduced the segregation strength between the two segments.
Next, thin films were exposed to non-polar/polar co-solvent vapors at 17 °C. The non-polar solvents used were, respectively, toluene, benzene and THF, and polar-solvents were water, methanol, ethanol, propanol, butanol, and hexanol, respectively. In systems of solvent annealing in THF/alcohol co-solvent vapors, both methanol and ethanol have high vapor pressure. Upon exposing to the vapor of THF/methanol and THF/ethanol, the surface morphology of solvent-annealed films revealed disordered nanocylinders. By contrast, upon exposing to solvent vapors of THF mixed with propanol, butanol or hexanol which have lower vapor pressure than that of methanol and ethanol, parallel-oriented nanocylinders with little density of defects can be obtained through transitions from disordered spheres to hexagonal packed ones and then to parallel nanocylinders with long-range order. The reason is that the vapor pressure of propanol, butanol and hexanol is lower than that of methanol and ethanol. As a result, the energy barrier for the transformation directly from disordered spheres to lying cylinders with long-range order was high. I speculate that the disordered spheres transform into lying nanocylinders with long-range order proceeding through an intermediate stage of hexagonal-packed spheres.
Furthermore, only spheres were present in thin films with solvent annealing in vapor of THF/water at 17 °C. As the temperature was decreased to 12 °C, the ordering of nanospheres can be improved. Such morphology was also obtained for solvent annealing in vapor of THF/propanol at 20 °C (5h). In the final part of the thesis, I demonstrate that switchable phase transitions can be induced upon solvent annealing at different temperatures or in vapors of different co-solvent mixtures.
關鍵字(中) ★ 溶劑退火
★ 雙團鏈共聚物
關鍵字(英) ★ solvent anneal
★ block copolymer
論文目次 目錄
摘要 i
Abstract iii
內容
圖目錄 x
Chapter 1. 簡介 1
1-1 高分子團鏈共聚物自組裝機制 1
1-2 塊材系統 3
1-3 薄膜系統 5
1-3-1 薄膜之厚度效應 5
1-3-2 薄膜之界面能效應 6
1-4 高分子薄膜之應用 7
1-4-1 模板 7
1-4-2 電極層 9
1-4-3 太陽能電池 9
1-5 控制高分子薄膜之有序性排列結構 11
1-5-1 噴嘴鑄造 11
1-5-2 表面改質 12
1-5-3 微波退火 13
1-5-4 基材圖形導向 15
1-5-5 溶劑退火 15
1-6 影響溶劑退火之因素 18
1-6-1 溶劑的選擇性 18
1-6-2 溶劑的揮發速率 20
1-6-3 溶劑退火環境的濕度影響 21
1-6-4 溶劑的蒸氣壓影響 21
1-6-5 溶劑退火時間 22
1-7 溶劑退火誘導相轉變 24
1-8 溶劑退火應用裝置 27
1-9 混和溶劑退火 28
1-10 混和溶劑退火的機制 30
1-11 混和溶劑退火的應用 31
1-12 薄膜非濕潤現象與穩定性 32
1-13 實驗動機 37
Chapter 2. 實驗內容 38
2-1 實驗材料 38
2-1-1 雙團鏈共聚物 38
2-1-2 溶劑 39
2-2 實驗過程 40
2-2-1 清洗基材流程 40
2-2-2 薄膜製備流程 40
2-3 實驗儀器 42
2-4-1 光學電子顯微鏡, OM 43
2-4-2 原子力顯微鏡, AFM 44
2-4-3 高真空場發射掃描式電子顯微鏡(FE-SEM) 46
Chapter 3. 結果與討論 47
3-1預先利用極性溶劑膨潤之影響 47
3-2共溶劑退火對薄膜之形貌機制影響 53
3-2-1 分析點陣列結構 53
3-2-2 甲苯共溶劑退火 56
3-2-3 苯系列之共溶劑退火 60
3-2-4 四氫呋喃共溶劑退火 63
3-2-5 非極性溶劑種類影響共溶劑退火之差異 68
3-2-6 分析梯田結構之結構差異 70
3-2-7 分析四氫呋喃/醇類共溶劑退火機制 73
3-2-8 分析四氫呋喃/水共溶劑退火 77
3-2-9 分析四氫呋喃與醇類共溶劑低溫退火影響 80
3-2-10 溫度差異對於PS-b-PEO結構轉換影響 83
3-2-11分析高分子量PS-b-PEO之四氫呋喃共溶劑退火 85
3-2-12 共溶劑退火影響球與圓柱結構之可逆性 88
Chapter 4. 結論 89
Chapter 5. 參考文獻 91
參考文獻 1. P. Alexandridis and J. F. Holzwarth, “Block Copolymers”, Curr. Opin. Colloid Interface Sci., 5, 312 (2000).
2. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson, “Multiblock Polymers: Panacea or Pandora’s Box”, Science, 336, 434 (2012).
3. S.P. Hsu, Y.S. Sun, “Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing”, 國立中央大學化學工程研究所碩士論文 (2010).
4. L. Leibler, “Theory of Microphase Separation in Block Copolymers”, Macromolecules, 13, 1062 (1980).
5. M. W. Matsen, F. S. Bates, “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091 (1996).
6. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortennsen, “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules, 28, 8796 (1995).
7. R. A. Farrell, N. Petkov, M. A. Morris, J. D. Holmes, “Self-assembled templates for the generation of arrays of 1-dimensional nanostructures: From molecules to devices”, Journal of Colloid and Interface Science, 349, 449 (2010).
8. A. Knoll, A. Horvat, K. S. Lyakhova, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, R. Magerle, “Phase Behavior in Thin Films of Cylinder- Forming Block Copolymers”, Phys. Rev. Lett., 89, 035501 ( 2002).
9. A. Horvat, K. S. Lyakhova, G. J. A. Sevink, and A. V. Zvelindovsky, R. Magerle, “Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling”, J. Chem. Phys., 120, 1117 (2004).
10. K. S. Lyakhova, G. J. A. Sevink, A. V. Zvelindovsky, A. Horvat, R. Magerle, “Role of dissimilar interfaces in thin films of cylinder-forming block copolymers”, J. Chem. Phys., 120, 1127 (2004).
11. S. Ludwigs, G. Krausch, R. Magerle, “Phase Behavior of ABC Triblock Terpolymers in Thin Films: Mesoscale Simulations”, Macromolecules, 38, 1859 (2005).
12. H. P. Huinink, J. C. M. Brokken-Zijp, M. A. van Dijk, G. J. A. Sevink, “Asymmetric block copolymers confined in a thin film”, J. Chem. Phys. , 112, 2452 (2000).
13. L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, “Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts”, Macromolecules, 39, 3608 (2006).
14. T. Ghoshal, T. Maity, J. F. Godsell, S. Roy, M. A. Morris, “Large Scale Monodisperse Hexagonal Arrays of Superparamagnetic Iron Oxides Nanodots: A Facile Block Copolymer Inclusion Method”, Adv. Mater., 24, 2390 (2012).
15. S. M. Kim, S. J. Ku, G. C. Jo, C. H. Bak, J. B. Kim, “Fabrication of versatile nanoporous templates with high aspect ratios by incorporation of Si-containing block copolymer into the lithographic bilayer system”, Polymer, 53, 2283 (2012).
16. E. J. W. Crossland, P. Cunha, S. Ludwigs, M. A. Hillmyer, U. Steiner, “In situ Electrochemical Monitoring of Selective Etching in Ordered Mesoporous Block-Copolymer Templates”, ACS Appl. Mater. Interfaces, 3, 1375 (2011).
17. E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D.M. Smilgies, G. E. S. Toombes, M. A. Hillmyer, S. Ludwigs, U. Steiner, H. J. Snaith, “A Bicontinuous Double Gyroid Hybrid Solar Cell”, Nano Lett., 9, 2807 (2009).
18. P. Docampo, M. Stefik, S. Guldin, R. Gunning, N. A. Yufa, N. Cai, P. Wang, U. Steiner ,U. Wiesner, H. J. Snaith, “Triblock-Terpolymer-Directed Self-Assembly of Mesoporous TiO2 : High-Performance Photoanodes for Solid-State Dye-Sensitized Solar Cells”, Adv. Energy Mater., 2, 676 (2012).
19. C. Tang, W. Wu, D. M. Smilgies, K. Matyjaszewski, T. Kowalewski, “Robust Control of Microdomain Orientation in Thin Films of Block Copolymers by Zone Casting”, J. Am. Chem. Soc., 133, 11802 (2011).
20. K. W. Guarini, C. T. Black, E. Huang, S. H. I. Yeung, “Optimization of Diblock Copolymer Thin Film Self Assembly”, Adv. Mater., 14, 1290 (2002).
21. M. S. She, T. Y. Lo, R. M. Ho, “Long-Range Ordering of Block Copolymer Cylinders Driven by Combining Thermal Annealing and Substrate Functionalization”, ACS. Nano, 3, 2000(2013).
22. X. Zhang, K. D. Harris, N. L. Y. Wu, J. N. Murphy, J. M. Buriak, “Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing”, ACS. Nano, 4, 7021(2010).
23. D. Borah, M. T Shaw, J.D. Holmes, M.A Morris, “Sub-10 nm Feature Size PS-b-PDMS Block Copolymer Structures Fabricated by a Microwave-Assisted Solvothermal Process”, ACS Appl. Mater. Interfaces, 5, 2004(2013).
24. R. A. Segalman, H. Yokoyama, E. J. Kramer, “Graphoepitaxy of Spherical Domain Block Copolymer Films”, Adv. Mater., 13, 1152 (2001).
25. J. Y. Cheng, C. A. Ross, E. L Thomas., H. I. Smith, G. J. Vancso, “Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography”, Adv. Mater., 15, 1599 (2003).
26. S. Park, B. Kim, J. Xu, T. Hofmann, B. M. Ocko, T. P. Russell, “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278 (2009).
27. J. G. Son, J. B. Chang, K. K. Berggren, C. A. Ross, “Assembly of Sub-10-nm Block Copolymer Patterns with Mixed Morphology and Period Using Electron Irradiation and Solvent Annealing”, Nano Lett., 11, 5079(2011)
28. G. Kim, M. Libera, “Morphological Development in Solvent-Cast Polystyrene-Polybutadiene-Polystyrene (SBS) Triblock Copolymer Thin Films”, Macromolecules, 31, 2569 (1998).
29. J. N. L. Albert, W. S. Young, R. L. Lewis, III, T. D. Bogart, J. R. Smith, T. H. Epps, III, “Systematic Study on the Effect of Solvent Removal Rate on the Morphology of Solvent Vapor Annealed ABA Triblock Copolymer Thin Films”, ACS. Nano, 6, 459(2012).
30. S. Y. Choi, C. Lee, J. W. Lee, C. Park, S. H. Kim, “Dewetting-Induced Hierarchical Patterns in Block Copolymer Films”, Macromolecules, 45, 1492(2012).
31. Y. S. Jung, J. B. Chang, E. Verploegen, K. K. Berggren, C. A. Ross, “A Path to Ultranarrow Patterns Using Self-Assembled Lithography”, Nano Lett., 10, 1000 (2010).
32. S. Park, D. H. Lee, T. P. Russell, “Self-Assembly of Block Copolymers on Flexible Substrates”, Adv. Mater., 22, 1882 (2010).
33. Y. Xuan, J. Peng, L. Cui, H.Wang, B. Li, Y. Han, “Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment”, Macromolecules, 37, 7301( 2004).
34. Y. Wang, X. Hong, B. Liu, C. Ma, C. Zhang, “Two-Dimensional Ordering in Block Copolymer Monolayer Thin Films upon Selective Solvent Annealing”, Macromolecules, 41, 5799( 2006).
35. M. W. Matsen, “Cylinder-sphere epitaxial transitions in block copolymer melts”, J. Chem. Phys., 114, 8165(2001).
36. I. F. Hsieh, H. J. Sun, Q. Fu, B. Lotz, K. A. Cavicchi. S. Z. D. Cheng, “Phase structural formation and oscillation in polystyrene-block-polydimethylsiloxane thin films ”, Soft Matter, 8, 7937(2012).
37. J. E. Seppala, R. L. Lewis , T. H. Epps, III, “Spatial and Orientation Control of Cylindrical Nanostructures in ABA Triblock Copolymer Thin Films by Raster Solvent Vapor Annealing”, ACS. Nano, 6, 9855(2012).
38. Y. S. Jung, C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns”, Adv. Mater., 21, 2540 (2009).
39. Z. Y. Guo, M. S. Lin, Y. T. Chang, Y. S. Sun, Y. W. Chiang, C. Y. Chou, W. Y. Woon, M. C. Chuang, “Surface relief terraces and self-assembled nanostructures in thin block copolymer films with solvent annealing”, Polymer , 53, 4827(2012).
40. B. Kim, S. W. Hong, S. Park, J. Xu, S. K. Hong, T. P. Russell, “Phase transition behavior in thin films of block copolymers by use of immiscible solvent vapors”, Soft Matter, 7, 443(2011).
41. J. N. L. Albert, T. D. Bogart, R. L. Lewis, K. L. Beers, M. J. Fasolka, J. B. Hutchison, B. D. Vogt, T. H. Epps, “Gradient Solvent Vapor Annealing of Block Copolymer Thin Films Using a Microfluidic Mixing Device”, Nano Lett., 11, 1351 (2011).
42. G. Reiter, A. Sharma, A. Casoli, M. O. David, R. Khanna, P. Auroy, “Thin Film Instability Induced by Long-Range Forces”, Langmuir, 15, 2551 (1999).
43. J. C. Meredith, A. P. Smith, A. Karim, E. J. Amis, “Combinatorial Materials Science for Polymer Thin-Film Dewetting”, Macromolecules, 33, 9747 (2000).
44. S. H. Lee, P. J. Yoo, S. J. Kwon, H. H. Lee, “Solvent-driven dewetting and rim instability”, J. Chem. Phys., 121, 4346 (2004).
45. P. M. Buschbaum, E. Bauer, O. Wunnicke, M. Stamm, “The control of thin film morphology by the interplay of dewetting, phase separation and microphase separation”, J. Phys. Condens. Matter, 17, 363–386 (2005).
46. J. Peng, Y. Han, W. Knoll, D. H. Kim, “Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block Copolymer Thin Films”, Macromol. Rapid Commun., 28, 1422 (2007).
47. T. H. Kim, J. Hwang, W. S. Hwang, J. Huh, H. C. Kim, S. H. Kim, J. M. Hong, E. L. Thomas, C. Park, “Hierarchical Ordering of Block Copolymer Nanostructures by Solvent Annealing Combined with Controlled Dewetting”, Adv. Mater., 20, 522 (2008).
48. C. Harrison, M. Park, P. Chaikin, R. A. Register, D. H. Adamson, N. Yao, “Depth Profiling Block Copolymer Microdomains”, Macromolecules, 31, 2185 (1998).
49. K. Fukunaga, H. Elbs, R. Magerle, G. Krausch, N. Yao, “Large-Scale Alignment of ABC Block Copolymer Microdomains via Solvent Vapor Treatment”, Macromolecules, 33, 947 (2000).
50. K. D. F. Wensink, B. Jérôme, “Dewetting Induced by Density Fluctuations” , Langmuir, 18, 413 (2002).
51. M. Konrad, A. Knoll, G. Krausch, R. Magerle, “Volume Imaging of an Ultrathin SBS Triblock Copolymer Film”, Macromolecules, 33, 5518 (2000).
52. I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications”, Progress in Polymer Science, 34, 1161 (2009).
53. K. S. Lyakhova, A. Horvat, A. V. Zvelindovsky, G. J. A. Sevink, “Dynamics of Terrace Formation in a Nanostructured Thin Block Copolymer film”, Langmuir, 22, 5848 (2006).
54. L. Tsarkova, “Distortion of a Unit Cell versus Phase Transition to Nonbulk Morphology in Frustrated Films of Cylinder-Forming Polystyrene‑b‑Polybutadiene Diblock Copolymers”, Macromolecules, 45, 7985(2012).
55. G. Coulon, T. P. Russell, V. R. Deline, P. F. Green, “Surface-induced orientation of symmetric, diblock copolymers: a secondary ion mass-spectrometry study”, Macromolecules, 22, 2581 (1989).
56. M. W. Davidson, M. Abramowitz, “OPTICAL MICROSCOPY”, Online PDF resource, 1999.
57. J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, 43, 461 (1931).
58. C. Tang, J. Bang, G. E. Stein, G. H. Fredrickson , C. J. Hawker, E. J. Kramer, Michael, J. Wang, “Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films”, Macromolecules, 41, 4328(2008).
59. J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer Handbook, John Wiley & Sons, New York, 1999.
60. N. Sota, N. Sakamoto, K. Saijo, T. Hashimoto, “Phase Transition from Disordered Sphere to Hex-Cylinder via Transient Ordering into Bcc-Sphere in SIS Triblock Copolymer”, Macromolecules, 36, 4534(2003).
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明