博碩士論文 100324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.139.104.214
姓名 羅祺強(Chi-chiang Luo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌
(Mesoscale Morphology of Novel Rod-Coil Diblock Copolymers and Polymer Blends)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構
★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗以導電性高分子聚(3-己烷基噻吩)(poly(3-hexylthiophene), P3HT)為研究出發點,因P3HT可應用於有機場效電晶、有機太陽能電池與有機發光二極體,由於元件的設計與光電性質的需求不同,必須藉由實驗製程的方式控制P3HT所生成的介觀形貌。為了能具體掌握形貌變化,以利提升元件性能,研究方向將分為三個系統:均聚物P3HT、P3HT與絕緣高分子混摻及P3HT與絕緣高分子所形成之雙嵌段共聚物。
1.均聚物P3HT 系統:P3HT在溶液中的結晶不匹配成核成長,主要由濃度效應所影響。當P3HT濃度越高時,則溶液的過飽和度也就越高,有利於形成球晶網狀結構,其流體性質為凝膠;反之,當P3HT濃度越低時,則溶液的過飽和度也就越低,有利於形成纖維網狀結構,其流體性質為溶膠。然而,即使在極低的P3HT濃度下,依然形成網狀構造,因此,才發展出P3HT的混摻系統與雙嵌段共聚物系統,改善現有問題。
2.P3HT與絕緣高分子 混摻系統:鑒於均聚物P3HT的基礎,藉由混摻絕緣高分子聚(甲基丙烯酸酯) (poly(methyl methacrylate), PMMA)、聚苯乙烯 (polystyrene, PS)和聚(丙烯酸十八酯) (poly(stearyl acrylate), PSA),因絕緣高分子的溶解度參數的不同,進而影響P3HT的結晶成核成長。當P3HT混摻過多的PMMA時,因兩高分子的不相容性,促使P3HT結晶不匹配成核成長,相當於提高過飽和度;換言之,當P3HT混摻PS或PSA時,因兩高分子具有相容性,可使P3HT形成單一且筆直的纖維,有利於應用於有機場效電晶體。
3.P3HT與絕緣高分子 雙嵌段共聚物系統:當P3HT與PSA形成雙嵌段共聚物時,因兩鏈段受化學鍵結,其介觀形貌受溶劑性質、硬桿/柔軟長度比和共聚物濃度影響。當P1和P2溶於苯甲醚時,可形成筆直且單一纖維,適合用於有機場效電晶體;當P3溶於苯甲醚時,高濃度下形成烤肉串狀(shish kebab),但低濃度下,形成硬桿團聚物(rod aggregation)。另外,當使用甲醇/四氫呋喃為共溶劑時,其溶劑性質為不良溶劑,使雙嵌段共聚物形成微米粒子(microparticle),由纖維物結構所團聚而成,大幅增加了P3HT吸光能力,有利於應用在有機太陽能電池。
摘要(英) The research is to study the morphologies of poly(3-hexylthiophene)(P3HT) homopolymers and its block copolymers since these materials can be used as potential materials for applications such as organic field-effect transistors(OFET), organic photovoltaics(OPV) and organic light-emitting diodes(OLED). In order to fit the devices’ design and to well control the photoelectric properties, it is necessary to understand how to finely tailor the mesoscale structures of P3HT in solutions and thin films. In the thesis, three investigated systems were arranged as follows:
Crystallization of P3HT homopolymers at various fractions in anisole:P3HT crystallographic mismatch nucleation and growth in solution were dominated by effect of the polymer concentration in anisole. At high P3HT concentrations, the degree of supersaturation in solution can be easily reached upon cooling to form network-like structures. As a result, the solutions containing large mass fractions of P3HT were in a gel state. By contrast, at low P3HT concentrations, the degree of supersaturation was low. The low supersaturation led P3HT to form fibrillar networks that can be dispersive in solution. The networks are comprised of fibrillar bundles with a high density of tip- and side-branches. In order to reduce the tip- and side-branches to grow single P3HT fibers in solution, two strategies were designed.
Mixtures of P3HT and insulating polymers:Blending insulating polymers (PMMA, PS and PSA) with various solubility parameters can affect P3HT crystallographic mismatch nucleation and growth in anisole. At low P3HT concentrations in anisole, adding small amounts of PS, PMMA and PSA can reduce the densitiy of tip- and side-branches within P3HT crystallites and cause the growth of single P3HT fibers. However, at high P3HT concentrations, as large amounts of PMMA were added into the P3HT mixture, the incompatibility between PMMA and P3HT caused high degree of crystallographic mismatch nucleation and growth, giving rise to amorphous P3HT agglomeration in solution.
Morphological study of poly(3-hexylthiophene)-block-poly(stearyl acrylate), P3HT-b-PSA, block copolymers in organic solvents:The morphology of P3HT-b-PSA was controlled by three factors:solvent quality, rod/coil length ratio and copolymer concentration. For the block copolymers with short PSA chains, increasing the solvent quality and lowering the polymer concentration favored the gowth of single P3HT fibers. By contrast, for the block copolymer with long PSA chains in anisole, shish-kebab stuctures formed at high concentrations whereas rod-like aggregations grew at low concentrations. In methanol/THF mixtures, where THF is good for both P3HT and PSA, and methanol is poor for both P3HT and PSA, P3HT-b-PSA tends to form fiber agglomeration.
關鍵字(中) ★ 聚(3-己烷基噻吩)
★ 介觀形貌
★ 過飽和度
★ 混摻
★ 雙嵌段共聚物
★ 單一纖維
關鍵字(英) ★ poly(3-hexylthiophene)
★ mesoscale morphology
★ supersaturation
★ blend
★ block copolymer
★ single fibers
論文目次 摘要 i
Abstract ii
目錄 ii
圖目錄 viii
表目錄 viii
第一章 簡介 1
1-1 P3HT多層級結構介紹 1
1-1-1 概要 1
1-1-2 一級結構 2
1-1-3 二級結構 3
1-1-4 三級結構 4
1-1-5 四級結構 5
1-2 超分子軟物質的成核成長機制 6
1-2-1 結晶生成的熱力學驅動力 6
1-2-2 結晶的均質與異質成核 8
1-2-3 理想纖維結晶成長理論 10
1-2-4 纖維網絡結構的接合種類 13
1-2-5 纖維成核成長的控制因子 14
1-2-6 溶液的過飽和度效應 16
1-3 P3HT結構對光電性質的影響 21
1-3-1 元件的理想結構 21
1-3-2 電學性質的影響 22
1-3-3 光學性質的影響 26
1-4 P3HT與絕緣高分子的混摻和嵌段 28
1-4-1 添加劑效應 28
1-4-2 P3HT與絕緣高分子混摻 33
1-4-3 硬桿-柔軟雙嵌段共聚物的形貌變化 34
1-4-4 P3HT嵌段絕緣高分子之雙嵌段共聚物 39
1-5 研究背景與動機 42
第二章 P3HT與絕緣高分子兩物質軟硬鏈段混摻 43
2-1 實驗 43
2-1-1 實驗材料 43
2-1-2 實驗儀器 45
2-1-3 試片製備與實驗方法 46
2-1-4 儀器分析 50
2-2 結果與討論 56
2-2-1 均聚物P3HT的濃度效應 56
2-2-2 混摻系統:0.004 wt% P3HT溶於苯甲醚 66
2-2-3 混摻系統:0.02 wt% P3HT溶於苯甲醚 75
2-2-4 混摻系統:0.2 wt% P3HT溶於苯甲醚 84
2-3 結論 98
第三章 P3HT-b-PSA於不同PSA鏈段下的形貌 100
3-1 實驗 100
3-1-1 實驗材料 100
3-1-2 實驗儀器 103
3-1-3 試片製備與實驗方法 104
3-1-4 儀器分析 106
3-2 結果與討論 109
3-2-1 雙嵌段共聚物於塊材狀態下的探討 109
3-3-2 雙嵌段共聚物溶於苯甲醚溶劑下的探討 115
3-2-3 雙嵌段共聚物溶於二氯甲烷溶劑下的探討 131
3-2-4 雙嵌段共聚物溶於環己烷溶劑下的探討 138
3-2-5雙嵌段共聚物溶於甲醇/四氫呋喃 共溶劑下的探討 144
3-3 結論 153
參考文獻 155
附錄 171
參考文獻 [1] Itaru Osaka and Richard D. McCullough, "Advances in Molecular Design and Synthesis of Regioregular Polythiophenes," Acc. Chem. Res., vol. 41, p. 1202–1214, 2008.
[2] Takuji Adachi, Johanna Brazard, Robert J. Ono, Benjamin Hanson, Matthew C. Traub, Zong-Quan Wu, Zicheng Li, Joshua C. Bolinger, Venkat Ganesan, Christopher W. Bielawski, David A. Vanden Bout and Paul F. Barbara, "Regioregularity and Single Polythiophene Chain Conformation," J. Phys. Chem. Lett., vol. 2, p. 1400–1404, 2011.
[3] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, "Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers," NATURE, vol. 401, p. 685–688, 1999.
[4] Guanghao Lu, Ligui Li and Xiaoniu Yang, "Achieving Perpendicular Alignment of Rigid Polythiophene Backbones to the Substrate by Using Solvent-Vapor Treatment," Adv. Mater., vol. 19, p. 3594–3598, 2007.
[5] Do Hwan Kim, Joong Tark Han, Yeong Don Park, Yunseok Jang, Jeong Ho Cho, Minkyu Hwang and Kilwon Cho, "Single-Crystal Polythiophene Microwires Grown by Self-Assembly," Adv. Mater., vol. 18, p. 719–723, 2006.
[6] Jianhua Liu, Mohammad Arif, Jianhua Zou, Saiful I. Khondaker and Lei Zhai, "Controlling Poly(3-hexylthiophene) Crystal Dimension: Nanowhiskers and Nanoribbons," Macromolecules, vol. 42, p. 9390–9393, 2009.
[7] Wei Chen, Maxim P. Nikiforov and Seth B. Darling, "Morphology Characterization in Organic and Hybrid Solar Cells," Energy Environ. Sci., vol. 5, p. 8045–8074, 2012.
[8] Gregory M. Newbloom, Felix S. Kim, Samson A. Jenekhe and Danilo C. Pozzo, "Mesoscale Morphology and Charge Transport in Colloidal Networks of Poly(3-hexylthiophene)," Macromolecules, vol. 44, p. 3801–3809, 2011.
[9] P. Barta , J. Sanetra and M. Zagórska, "Efficient Electroluminescence in Regioregular Polyalkylthiophene Light-Emitting Diodes," Synthetic Metals, vol. 94, p. 119–121, 1998.
[10] Tian-An Chen, Xiaoming Wu and Reuben D. Rieke, "Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-state Properties," J. Am. Chem. Soc., vol. 117, p. 233–244, 1995.
[11] Zhenan Bao, Ananth Dodabalapur and Andrew J. Lovinger, "Soluble and Processable Regioregular Poly(3‐hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility," Appl. Phys. Lett., vol. 69, p. 4108–4110, 1996.
[12] Kyo Jin Ihn, Jeff Moulton and Paul Smith, "Whiskers of poly(3-alkylthiophene)s," Journal of Polymer Science Part B: Polymer Physics, vol. 31, p. 735–742, 1993.
[13] Guanghao Lu, Ligui Li and Xiaoniu Yang, "Morphology and Crystalline Transition of Poly(3-butylthiophene) Associated with Its Polymorphic Modifications," Macromolecules, vol. 41, p. 2062–2070, 2008.
[14] Wei Wang, Kee Chua Toh and Chauhari Wuiwui Tjiu, "Fine Structures in the Spherulites of Regioregular Poly(3-dodecylthiophene)," Macromol. Chem. Phys., vol. 205, p. 1269–1273, 2004.
[15] Zhiyong Ma, Yanhou Geng and Donghang Yan, "Extended-Chain Lamellar Packing of Poly(3-butylthiophene) in Single Crystals," Polymer, vol. 48 , p. 31–34, 2007.
[16] Jing-Liang Li and Xiang-Yang Liu , "Architecture of Supramolecular Soft Functional Materials: From Understanding to Micro-/Nanoscale Engineering," Adv. Funct. Mater., vol. 20, p. 3196–3216, 2010.
[17] Xiang-Yang Liu , "Interfacial Effect of Molecules on Nucleation Kinetics," J. Phys. Chem. B, vol. 105, p. 11550–11558, 2001.
[18] Han Yan, Yong Yan, Zai Yu and Zhixiang Wei, "Self-Assembling Branched and Hyperbranched Nanostructures of Poly(3-hexylthiophene) by a Solution Process," J. Phys. Chem. C, vol. 115, p. 3257–3262, 2011.
[19] Gregorio García, Vicente Timón, Alfonso Hernández-Laguna, Amparo Navarro and Manuel Fernández-Gómez, "Influence of the Alkyl and Alkoxy Side Chains on the Electronic Structure and Charge-Transport Properties of Polythiophene Derivatives," Phys. Chem. Chem. Phys., vol. 13, p. 10091–10099, 2011.
[20] Ricky Lam, Luca Quaroni, Tor Pedersen and Michael A. Rogers, "A Molecular Insight into The Nature of Crystallographic Mismatches in Self-Assembled Fibrillar Networks under Non-Isothermal Crystallization Conditions," Soft Matter, vol. 6, p. 404–408, 2010.
[21] Kui Zhao, Zicheng Ding, Longjian Xue and Yanchun Han, "Crystallization-Induced Phase Segregation Based on Double-Crystalline Blends of Poly(3-hexylthiophene) and Poly(ethylene glycol)s," Macromol. Rapid Commun., vol. 31, p. 532–538, 2010.
[22] Jong K. Keum, Kai Xiao, Ilia N. Ivanov, Kunlun Hong, James F. Browning, Gregory S. Smith, Ming Shao, Kenneth C. Littrell, Adam J. Rondinone, E. Andrew Payzant, Jihua Chen and Dale K. Hensley, "Solvent Quality-Induced Nucleation and Growth of Parallelepiped Nanorods in Dilute Poly(3-hexylthiophene) (P3HT) Solution and the Impact on the Crystalline Morphology of Solution-Cast Thin Film," CrystEngComm, vol. 15, p. 1114–1124, 2013.
[23] Yeong Don Park, Hwa Sung Lee, Yeon Joo Choi, Donghoon Kwak, Jeong Ho Cho, Sichoon Lee and Kilwon Cho, "Solubility-Induced Ordered Polythiophene Precursors for High-Performance Organic Thin-Film Transistors," Adv. Funct. Mater., vol. 19, p. 1200–1206, 2009.
[24] Jin Young Oh, Minkwan Shin, Tae Il Lee, Woo Soon Jang, Yuho Min, Jae-Min Myoung, Hong Koo Baik and Unyong Jeong, "Self-Seeded Growth of Poly(3-hexylthiophene) (P3HT) Nanofibrils by a Cycle of Cooling and Heating in Solutions," Macromolecules, vol. 45, p. 7504–7513, 2012.
[25] Rongyao Wang, Xiang-Yang Liu, Junying Xiong and Jingliang Li, "Real-Time Observation of Fiber Network Formation in Molecular Organogel: Supersaturation-Dependent Microstructure and Its Related Rheological Property," J. Phys. Chem. B, vol. 110, p. 7275–7280, 2006.
[26] Jun-Ying Xiong, Xiang-Yang Liu, Jing-Liang Li and Martin Wilhelm Vallon, "Architecture of Macromolecular Network of Soft Functional Materials: from Structure to Function," J. Phys. Chem. B, vol. 111, p. 5558–5563, 2007.
[27] Jing-Liang Li and Xiang-Yang Liu, "Microengineering of Soft Functional Materials by Controlling the Fiber Network Formation," J. Phys. Chem. B, vol. 113, p. 15467–15472, 2009.
[28] Jing-Liang Li, Bing Yuan, Xiang-Yang Liu and Hong-Yao Xu, "Microengineering of Supramolecular Soft Materials by Design of the Crystalline Fiber Networks," Crystal Growth & Design, vol. 10, p. 2699–2706, 2010.
[29] Rong-Yao Wang, Xiang-Yang Liu and Jing-Liang Li, "Engineering Molecular Self-Assembled Fibrillar Networks by Ultrasound," Crystal Growth & Design, vol. 9, p. 3286–3291, 2009.
[30] Alejandro L. Briseno , Stefan C. B. Mannsfeld , Samson A. Jenekhe , Zhenan Bao and Younan Xia , "Introducing Organic Nanowire Transistors," materialstoday, vol. 11, p. 38–47, 2008.
[31] Colin Reese and Zhenan Bao, "Organic Single-Crystal Field-Effect Transistors," materialstoday, vol. 10, p. 20–27, 2007.
[32] Sadaki Samitsu, Takeshi Shimomura, Seiji Heike, Tomihiro Hashizume and Kohzo Ito, "Field-Effect Carrier Transport in Poly(3-alkylthiophene) Nanofiber Networks and Isolated Nanofibers," Macromolecules, vol. 43, p. 7891–7894, 2010.
[33] Harald Hoppe and N. Serdar Sariciftci, "Polymer Solar Cells," Adv Polym Sci, vol. 214, p. 1–86, 2008.
[34] Serap Günes, Helmut Neugebauer and Niyazi Serdar Sariciftci, "Conjugated Polymer-Based Organic Solar Cells," Chem. Rev., vol. 107, p. 1324–1338, 2007.
[35] Yi-Kang Lan and Ching-I Huang, "Charge Mobility and Transport Behavior in the Ordered and Disordered States of the Regioregular Poly(3-hexylthiophene)," J. Phys. Chem. B, vol. 113, p. 14555–14564, 2009.
[36] Yi-Kang Lan and Ching-I Huang, "A Theoretical Study of the Charge Transfer Behavior of the Highly Regioregular Poly-3-hexylthiophene in the Ordered State," J. Phys. Chem. B, vol. 112, p. 14857–14862, 2008.
[37] Gregory M. Newbloom, Katie M. Weigandt and Danilo C. Pozzo, "Electrical, Mechanical, and Structural Characterization of Self-Assembly in Poly(3-hexylthiophene) Organogel Networks," Macromolecules, vol. 45, p. 3452–3462, 2012.
[38] John D. Roehling, Ilke Arslan and Adam J. Moulé, "Controlling Microstructure in Poly(3-hexylthiophene) Nanofibers," J. Mater. Chem., vol. 22, p. 2498–2506, 2012.
[39] Takakazu Yamamoto, Dharma Komarudin, Minoru Arai, Bang-Lin Lee, Hajime Suganuma, Naoki Asakawa, Yoshio Inoue, Kenji Kubota, Shintaro Sasaki, Takashi Fukuda and Hiro Matsuda , "Extensive Studies on π-Stacking of Poly(3-alkylthiophene-2,5-diyl)s and Poly(4-alkylthiazole-2,5-diyl)s by Optical Spectroscopy, NMR Analysis, Light Scattering Analysis, and X-ray Crystallography," J. Am. Chem. Soc., vol. 120, pp. 2047-2058, 1998.
[40] Chun-Yu Chen, Shu-Hua Chan, Jian-Yi Li, Kuan-Han Wu, Hsin-Lung Chen, Jean-Hong Chen, Wen-Yao Huang and Show-An Chen, "Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-hexylthiophene)/Xylene Gel Studied by Small-Angle X-ray Scattering," Macromolecules, vol. 43, p. 7305–7311, 2010.
[41] Xiang Yang Liu, Prashant D. Sawant, Wee Beng Tan, I. B. M. Noor, C. Pramesti and B. H. Chen, "Creating New Supramolecular Materials by Architecture of Three-Dimensional Nanocrystal Fiber Networks," J. AM. CHEM. SOC., vol. 124, p. 15055–15063, 2002.
[42] Takahiro Fukumatsu, Akinori Saeki and Shu Seki, "Separation of Intra- and Inter-Molecular Charge Carrier Mobilities of Poly(3-hexylthiophene) in Insulating Polystyrene Matrix," J. Photopolym. Sci. Technol., vol. 25, p. 665–668, 2012.
[43] Jung-Chuan Lin, Wen-Ya Lee, Hung-Chin Wu, Chih-Chieh Chou, Yu-Cheng Chiu, Ya-Sen Sun and Wen-Chang Chen, "Morphology and Field-Effect Transistor Characteristics of Semicrystalline Poly(3-hexylthiophene) and Poly(stearyl acrylate) Blend Nanowires," J. Mater. Chem., vol. 22, p. 14682–14690, 2012.
[44] Shalom Goffri, Christian Müller, Natalie Stingelin-Stutzmann, Dag W. Breiby, Christopher P. Radano, Jens W. Andreasen, Richard Thompson, René A. J. Janssen, Martin M. Nielsen, Paul Smith and Henning Sirringhaus, "Multicomponent Semiconducting Polymer Systems with Low Crystallization-Induced Percolation Threshold," Nature Materials, vol. 5, pp. 950 - 956, 2006.
[45] Felix Sunjoo Kim and Samson A. Jenekhe, "Charge Transport in Poly(3-butylthiophene) Nanowires and Their Nanocomposites with an Insulating Polymer," Macromolecules, vol. 45, p. 7514–7519, 2012.
[46] Shih-Hao Chou, David T. Wu, Heng-Kwong Tsao and Yu-Jane Sheng, "Morphology and Internal Structure Control of Rod–Coil Copolymer Aggregates by Mixed Selective Solvents," Soft Matter, vol. 7, p. 9119–9129, 2011.
[47] Shih-Hao Chou, Heng-Kwong Tsao and Yu-Jane Sheng, "Structural Aggregates of Rod–Coil Copolymer Solutions," J. Chem. Phys., vol. 134, p. 034904, 2011.
[48] Hsieh-Chih Chen , I-Che Wu , Jui-Hsiang Hung , Fu-Je Chen , I-Wen P. Chen , Yung-Kang Peng , Chao-Sung Lin , Chun-Hsien Chen , Yu-Jane Sheng , Heng-Kwong Tsao and Pi-Tai Chou , "Superiority of Branched Side Chains in Spontaneous Nanowire Formation: Exemplified by Poly(3-2-methylbutylthiophene) for High-Performance Solar Cells," Small, vol. 7, p. 1098–1107, 2011.
[49] Christian Müller , Shalom Goffri, Dag W. Breiby, Jens W. Andreasen, Henri D. Chanzy, René A. J. Janssen, Martin M. Nielsen, Christopher P. Radano, Henning Sirringhaus, Paul Smith and Natalie Stingelin-Stutzmann, "Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers," Adv. Funct. Mater., vol. 17, p. 2674–2679, 2007.
[50] Amanda C. Kamps, Michael Fryd and So-Jung Park, "Hierarchical Self-Assembly of Amphiphilic Semiconducting Polymers into Isolated, Bundled, and Branched Nanofibers," ACS Nano, vol. 6, p. 2844-2852, 2012.
[51] Xiang Yu, Kai Xiao, Jihua Chen, Nickolay V. Lavrik, Kunlun Hong, Bobby G. Sumpter and David B. Geohegan, "High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers," ACS Nano, vol. 5, p. 3559–3567, 2011.
[52] Jing-Yu Lee, Chih-Jung Lin, Chen-Tsyr Lo, Jing-Cherng Tsai and Wen-Chang Chen, "Synthesis, Morphology, and Field-Effect Transistor Characteristics of Crystalline Diblock Copolymers Consisted of Poly(3-hexylthiophene) and Syndiotactic Polypropylene," Macromolecules, vol. 46, p. 3005–3014, 2013.
[53] Ioan Botiz and Seth B. Darling, "Self-Assembly of Poly(3-hexylthiophene)-block-polylactide Block Copolymer and Subsequent Incorporation of Electron Acceptor Material," Macromolecules, vol. 42, p. 8211–8217, 2009.
[54] Elisa Mele, Francesca Lezzi , Alessandro Polini, Davide Altamura, Cinzia Giannini and Dario Pisignano, "Enhanced Charge-Carrier Mobility in Polymer Nanofibers Realized by Solvent-Resistant Soft Nanolithography," J. Mater. Chem., vol. 22, p. 18051–1805, 2012.
[55] Yanhong Tong, Qingxin Tang, Henrik Till Lemke, Kasper Moth-Poulsen, Fredrik Westerlund, Peter Hammershøj, Klaus Bechgaard, Wenping Hu and Thomas Bjørnholm, "Solution-Based Fabrication of Single-Crystalline Arrays of Organic Nanowires," Langmuir, vol. 26, p. 1130–1136, 2010.
[56] Marco Faustini, Benjamin Louis, Pierre A. Albouy, Monika Kuemmel and David Grosso, "Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions," J. Phys. Chem. C, vol. 114, p. 7637–7645, 2010.
[57] David Grosso, "How to Exploit The Full Potential of The Dip-Coating Process to Better Control Film Formation," J. Mater. Chem., vol. 21, p. 17033–1703, 2011.
[58] Liang Cui, Yan Ding, Xue Li, Zhe Wang and Yanchun Han, "Solvent and Polymer Concentration Effects on the Surface Morphology Evolution of Immiscible Polystyrene/Poly(methyl methacrylate) Blends," Thin Solid Films, vol. 515, p. 2038–2048, 2006.
[59] Longzhen Qiu, Wi Hyoung Lee, Xiaohong Wang, Jong Soo Kim, Jung Ah Lim, Donghoon Kwak, Shichoon Lee and Kilwon Cho, "Organic Thin-film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer," Adv. Mater., vol. 21, p. 1349–1353, 2009.
[60] Longzhen Qiu, Xiaohong Wang, Wi Hyoung Lee, Jung Ah Lim, Jong Soo Kim, Donghoon Kwak and Kilwon Cho, "Organic Thin-Film Transistors Based on Blends of Poly(3-hexylthiophene) and Polystyrene with a Solubility-Induced Low Percolation Threshold," Chem. Mater., vol. 21, p. 4380–4386, 2009.
[61] 林智仁, “場發射式掃瞄式電子顯微鏡簡介,” 工業材料雜誌, 第 冊181期, p. 94–99, 91.
[62] Alberto Salleo , R. Joseph Kline , Dean M. DeLongchamp and Michael L. Chabinyc, "Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers," Adv. Mater., vol. 22, p. 3812–3838, 2010.
[63] 博精儀器股份有限公司, “Lambda Bio 紫外光/可見光分光光譜儀”.
[64] G. M. Newbloom, K. M. Weigandt and D. C. Pozzo, "Structure and Property Development of Poly(3-hexylthiophene) Organogels Probed with Combined Rheology, Conductivity and Small Angle Neutron Scattering," Soft Matter, vol. 8, p. 8854–8864, 2012.
[65] M. Knaapila, D. W. Bright, B. S. Nehls, V. M. Garamus, L. Almásy, R. Schweins, U. Scherf and A. P. Monkman, "Development of Intermolecular Structure and Beta-phase of Random Poly[9,9-bis(2-ethylhexyl)fluorene]-co-(9,9-dioctylfluorene) in Methylcyclohexane," Macromolecules, vol. 44, p. 6453–6460, 2011.
[66] Y.-C. Li, K.-B. Chen, H.-L. Chen, C.-S. Hsu, C.-S. Tsao, J.-H. Chen and S.-A. Chen, "Fractal Aggregates of Conjugated Polymer in Solution State," Langmuir, vol. 22, p. 11009–11015, 2006.
[67] J. Teixeira, "Small-Angle Scattering by Fractal Systems," J. Appl. Cryst., vol. 21, p. 781–785, 1988.
[68] T. Freltoft, J. K. Kjems and S. K. Sinha, "Power-Law Correlations and Finite-Size Effects in Silica Particle Aggregates Studied by Small-Angle Neutron Scattering," Phys. Rev. B, vol. 33, p. 269–275, 1986.
[69] Y.-C. Li, C.-Y. Chen, Y.-X. Chang, P.-Y. Chuang, J.-H. Chen, H.-L. Chen, C.-S. Hsu, V. A. Ivanov, P. G. Khalatur and S.-A. Chen, "Scattering Study of the Conformational Structure and Aggregation Behavior of a Conjugated Polymer Solution," Langmuir, vol. 25, p. 4668–4677, 2009.
[70] Jeffrey J. Richards, Kathleen M. Weigandt and Danilo C. Pozzo, "Aqueous Dispersions of Colloidal Poly(3-hexylthiophene) Gel Particles with High Internal Porosity," Journal of Colloid and Interface Science, vol. 364, p. 341–350, 2011.
[71] Martin Brinkmann and Patrice Rannou, "Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3-hexylthiophene) Grown by Directional Epitaxial Solidification," Adv. Funct. Mater., vol. 17, p. 101–108, 2007.
[72] R. Joseph Kline, Michael D. McGehee, Ekaterina N. Kadnikova, Jinsong Liu, Jean M. J. Fre´chet and Michael F. Toney, "Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight," Macromolecules, vol. 38, p. 3312–3319, 2005.
[73] S. Hugger, R. Thomann, T. Heinzel and T. Thurn-Albrecht, "Semicrystalline Morphology in Thin Films of Poly(3-hexylthiophene)," Colloid Polym Sci, vol. 282, p. 932–938, 2004.
[74] Do Hwan Kim, Yeong Don Park, Yunseok Jang, Hoichang Yang, Yong Hoon Kim, Jeong In Han, Dae Gyu Moon, Soojin Park, Taihyun Chang, Changhwan Chang, Mankil Joo, Chang Y. Ryu and Kilwon Cho, "Enhancement of Field -Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors," Adv. Funct. Mater., vol. 15, p. 77–82, 2005.
[75] Felix Sunjoo Kim and Samson A. Jenekhe, "Charge Transport in Poly(3-butylthiophene) Nanowires and Their Nanocomposites with an Insulating Polymer," Macromolecules, vol. 45, p. 7514−7519, 2012.
[76] Wentao Xu, Haowei Tang, Hongying Lv, Jun Li, Xiaoli Zhao, Hui Li, Ning Wang and Xiaoniu Yang, "Sol–Gel Transition of Poly(3-hexylthiophene) Revealed by Capillary Measurements: Phase Behaviors, Gelation Kinetics and the Formation Mechanism," Soft Matter, vol. 8, p. 726–733, 2012.
[77] Chloé Chevigny, Florent Dalmas, Emanuela Di Cola, Didier Gigmes, Denis Bertin, François Boué and Jacques Jestin, "Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior," Macromolecules, vol. 44, p. 122–133, 2011.
[78] Nicolas Jouault, Florent Dalmas, Sylvère Said, Emanuela Di Cola, Ralf Schweins, Jacques Jestin and François Boué, "Direct Measurement of Polymer Chain Conformation in Well-Controlled Model Nanocomposites by Combining SANS and SAXS," Macromolecules, vol. 43, p. 9881–9891, 2010.
[79] Jung-Chuan Lin, Wen-Ya Lee, Chi-Ching Kuo, Chaoxu Li, Raffaele Mezzenga and Wen-Chang Chen, "Synthesis, Morphology, and Field-Effect Transistor Characteristics of New Crystalline–Crystalline Diblock Copolymers of Poly(3-hexylthiophene-block-steryl acrylate)," JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 50, p. 686–695, 2012.
[80] 電子能譜(Elctron Spectroscopy) 第二章 X射線光電子能譜(XPS), PDF online.
[81] Giovanni Li Destri, Thomas F. Keller, Marinella Catellani, Francesco Punzo, Klaus D. Jandt and Giovanni Marletta, "Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3-hexylthiophene) Ultrathin Films," Macromol. Chem. Phys., vol. 212, p. 905–914, 2011.
[82] Günter Reiter and Gert R. Strobl, "Progress in Understanding of Polymer Crystallization," Lect. Notes Phys. 714 (Springer, Berlin Heidelberg 2007), 2007.
[83] Wei-Ru Wu, U-Ser Jeng, Chun-Jen Su, Kung-Hwa Wei, Ming-Shin Su, Mao-Yuan Chiu, Chun-Yu Chen, Wen-Bin Su, Chiu-Hun Su and An-Chung Su, "Competition between Fullerene Aggregation and Poly(3-hexylthiophene) Crystallization upon Annealing of Bulk Heterojunction Solar Cells," ACS Nano, vol. 5, p. 6233–6243.
[84] Rui Zhang, Bo Li, Mihaela C. Iovu, Malika Jeffries-EL, Geneviève Sauvé, Jessica Cooper, Shijun Jia, Stephanie Tristram-Nagle, Detlef M. Smilgies, David N. Lambeth, Richard D. McCullough and Tomasz Kowalewski, "Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-hexylthiophene) Thin Film Field Effect Transistors," J. AM. CHEM. SOC., vol. 128, p. 3480–3481, 2006.
[85] Jui-Hsiang Hung, Yung-Lung Lin, Yu-Jane Sheng and Heng-Kwong Tsao, "Structure−Photophysical Property Relationship of Conjugated Rod−Coil Block Copolymers in Solutions," Macromolecules, vol. 45, p. 2166−2170, 2012.
[86] Zai Yu, Han Yan, Kun Lu, Yajie Zhang and Zhixiang Wei, "Self-Assembly of Two-Dimensional Nanostructures of Linear Regioregular Poly(3-hexylthiophene)," RSC Adv., vol. 2, p. 338–343, 2012.
[87] Ye Huang, He Cheng and Charles C. Han, "Unimer Aggregate Equilibrium to Large Scale Association of Regioregular Poly(3-hexylthiophene) in THF Solution," Macromolecules, vol. 44, p. 5020–5026, 2011.
[88] Liehui Ge, Sunny Sethi, Lijie Ci, Pulickel M. Ajayan, and Ali Dhinojwala, "Carbon Nanotube-Based Synthetic Gecko Tapes," PNAS, vol. 104, p. 10792–10795, 2007.
[89] J. Brandrup, E. H. Immergut, E. A. Grulke, "Polymer Handbook," 4/e., John Wiley & Sons, 1999.
[90] Don Aylor, W. S. Bradfield, "Effects of Electrostatic Force, Relative Humidity, Heating Surface Temperature, And Size And Shape on Droplet Evaporation Rate" I&EC Fundamentals, vol. 8, p. 8–16, 1969.
[91] Leslie Howard Sperling, "Introduction To Physical Polymer Science," 4/e., John Wiley & Sons, 2006.
[92] Yunpeng Qu, Qing Su, Sijun Li, Guanghao Lu, Xun Zhou, Jidong Zhang, Zhaobin Chen, and Xiaoniu Yang, "H-Aggregated Form II Spherulite of Poly(3-butylthiophene) Grown from Solution," ACS Macro Lett., vol. 1, p. 1274–1278, 2012.
[93] Kevin M. Coakley, Yuxiang Liu, Michael D. McGehee, Karen L. Frindell, and Galen D. Stucky, "Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications," Adv. Funct. Mater., vol. 13, p. 301–306, 2003.
[94] Jung Ah Lim, Feng Liu, Sunzida Ferdous, Murugappan Muthukumar and Alejandro L. Briseno, "Polymer Semiconductor Crystals," materialstoday, vol. 13, p. 14–24, 2010.
[95] Gopal K. Mor, Sanghoon Kim, Maggie Paulose, Oomman K. Varghese,Karthik Shankar, James Basham, and Craig A. Grimes, "Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array–P3HT Based Heterojunction Solar Cells," Nano Lett., vol. 9, p. 4250–4257, 2009.
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明