博碩士論文 992203050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.147.42.197
姓名 楊哲欽(Che-Chin Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含三併環噻吩之有機小分子半導體的合成與性質探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機光伏電池 (Organic Photovoltaics, OPVs) 因具有低成本、可大面積製作及可撓曲性等特點,成為綠色能源研究的重點之一。許多科學家致力於改良主動層分子的結構,來提高 OPVs 的光電轉換效率。本論文以三併環噻吩dithieno[2,3-b:3’,2’-d]thiophene (DTT) 稠環單元為中心片段,4-(5-(2-ethylhexyl)thiophen-2-yl)-7-(thiophen-2-yl)
benzo[c][1,2,5]thiadiazole (BT-EH)為末端手臂,合成出小分子半導體S3,結構簡寫為EH-BT-(DTT-Th)-BT-EH,其最大吸收波長為518 nm,莫耳吸收係數為73400 M-1cm-1。此外,在合成過程中還得到一些合成中間體的偶合物 Dimer-BT-EH 及 Dimer-BT-TPA。 Dimer-BT-EH 的最大吸收波長為 527 nm,Dimer-BT-TPA的最大吸收波長為 563 nm 。 以S3、Dimer-BT-EH及Dimer-BT-TPA為p型材料,搭配PC71BM做為主動層,且由溶液製程所組裝的有機太陽能電池光電轉換效率分別為0.21 %、0.28 %、0.67 %。
摘要(英) Organic photovoltaic (OPV) is a hot research topic of the green energy due to its low-cost, large area processing and flexibility. Many scientists put efforts in preparing new active components molecular character of active layer, to improve the photoelectric conversion efficiency (PCE) of OPVs. In this thesis, we synthesized an organic small molecule semiconductor S3 for using as a p-type semiconductor for OPV. S3 comprises a dithieno [2,3-b:3’,2’-d] thiophene (DTT), a fused-ring molecule, as the core unit, and BT-EH (4-(5-(2-ethylhexyl)thiophen-2 -yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole) as arms attached on each side. The absorption maximum and molar absorption coefficient of S3 is 518 nm and 73400 M-1cm-1, respectively. Durning the synthesis of S3, two byproducts Dimer-BT-EH and Dimer-BT-TPA were also isolated. Dimer-BT-EH and Dimer-BT-TPA have the absorption maximum at 527 nm and 563 nm, respectively. The bulk heterojunction (BHJ) organic photovoltaic devices (OPVs) based on these three organic p-type semiconductor were fabricated via solution process. When PC71BM were used as a n-type acceptor, PCE of the devices based on S3, Dimer-BT-EH and Dimer-BT-TPA 0.21 %, 0.28 %, and 0.67 %, respectively.
關鍵字(中) ★ 有機光伏電池
★ 小分子半導體
★ 三併環噻吩
★ 溶液製程
關鍵字(英) ★ OPV
★ DTT
★ small molecule
論文目次 目錄
摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 viii
表目錄 xi
附錄 xii
第一章、緒論 1
1-1 前言 1
1-1-1、太陽光能譜 1
1-1-2、有機光伏電池起源簡介3 3
1-2 有機太陽能電池元件 4
1-2-1 單層元件 (single layer device) 4
1-2-2 雙層元件 (bilayer heterojunction device) 5
1-2-3 混摻異質接面元件 (bulk heterojunction device, BHJ device) 6
1-3 有機太陽能電池的工作原理 7
1-4 有機太陽能電池光電參數 10
1-4-1 開路電壓 (open circuit voltage,VOC) 10
1-4-2 短路電流 (short circuit current,JSC) 12
1-4-3 填充因子 (fill factor,FF) 13
1-4-4 能量轉換效率 (power conversion efficiency,PCE) 14
1-4-5 入射光致電流轉換效率 (incident photo to current conversion efficiency,IPCE) 14
1-5 富勒烯衍生物 (fullerene/C60 derivatives) 簡介 15
1-6 有機半導體 p 型施體材料 16
1-7 研究動機及目標 25
第二章 、實驗部分 27
2-1 實驗藥品 27
2-2 儀器分析與樣品製備 29
2-2-1紫外光-可見光吸收光譜儀 (Cary 300 UV-Vis spectrophotometer) 29
2-2-2 核磁共振光譜 (Bruker 300 MHz NMR Spectrometer) 30
2-2-3 循環伏安法 (PGSTAT 30AutoLab) 31
2-2-4 Bulk heterojunction solar cell 元件的組裝與量測步驟: 32
2-3 小分子半導體S3的合成流程: 34
2-3-1 中心主幹DTT-Th之合成 35
2-3-1-1 2-Br-3HT的合成步驟: 35
2-3-1-2 DTT的合成步驟: 35
2-3-1-3 Sn-DTT 之合成步驟: 35
2-3-1-4 DTT-Th 的合成步驟: 36
2-3-2手臂T-BT-T-EH 之合成步驟 37
2-3-2-1 EH-T合成步驟: 37
2-3-2-2 Br-BT-T-EH的合成步驟: 38
2-3-2-3 T-BT-T-EH的合成步驟: 39
2-3-3 S3之合成 40
2-3-3-1 Sn-DTT-Th的合成步驟: 40
2-3-3-2 Br-T-BT-T-EH合成步驟: 41
2-3-3-3 S3的合成步驟: 42
2-4 Dimer-BT-EH 的合成流程: 44
2-4-1 Br-DTT 的合成步驟: 44
2-4-2 Sn-T-BT-T-EH: 45
2-4-3 Dimer-BT-EH 的合成步驟: 46
2-5 小分子半導體Dimer-BT-TPA合成流程 48
2-5-1 T-BT-T 的合成步驟: 49
2-5-2 Br-TPA-Oh 之合成步驟: 49
2-5-3 BT-TPA之合成步驟: 49
2-5-4 Sn-BT-TPA 的合成步驟: 51
2-5-5 Dimer-BT-TPA的合成步驟: 52
2-6 中間產物之結構、命名、簡稱及分子量 53
第三章、結果與討論 56
3-1微波效應(microwave effct) 56
3-2 Stille coupling的反應機構 57
3-3Dimer-BT-EH及Dimer-BT-TPA的合成 58
3-4 S3、Dimer-BT-EH、Dimer-BT-TPA之光學性質探討 61
3-5 S3、Dimer-BT-EH、Dimer-BT-TPA前置軌域能階分布 69
3-6 S3、Dimer-BT-EH及Dimer-BT-TPA所組裝的BHJ OPV元件效率 73
第四章、結論 77
參考文獻 78
附錄 85

圖目錄
圖1-1 太陽光能譜圖(綠色-太陽光光子數分布;
紅色-太陽光能量分布) ………………….....................…..…..2
圖1-2 Air Mass 示意圖…………………………………………..…..2
圖1-3 單層元件結構……………………………………….………...4
圖1-4 (a)ITO/CuPe(250 Å)/PV(450 Å)/ Ag cell (b) CuPc (c) PV…...5
圖1-5 有機光伏電池工作原理示意圖…............................................8
圖 1-6 不同電子受體的還原電位與開路電壓之關係圖…..............12
圖 1-7 不同有機高分子之氧化電位與開路電壓之關係圖…...........12
圖 1-8 太陽能電池的I-V特性曲線圖…….....................................…14
圖1-9 (a) C60 (b) PC61BM (c) ICBA的結構…...........................…...16
圖1-10 (a)共軛高分子示意圖 (b)有機半導體能帶圖…..............…17
圖1-11 D-A軌域混成可調控前置軌域能階並降低能隙............….18
圖1-12 常見的推電子單元……………….................................….…19
圖1-13 常見的拉電子單元………….....................................…….…19
圖1-14 PTB7共振式……………….............................................…...20
圖1-15 DTS(PTTh2)2之分子結構…………........................................21
圖 1-16 DTS(PTTh2)2 的UV-Vis吸收光譜圖…...............................22
圖 1-17 ITO/MoOX/DTS(PTTh2)2:PC70BM(7:3)/Al元件的IPCE圖..22
圖1-18 7T、DERHD7T及DR3TBDT的分子結構.......................23
圖1-19 圖1-19 (a)7T及DERHD7T (b)DR3TBDT在氯仿中及
(a)(c)成膜後的UV-Vis吸收光譜圖..................................…23
圖1-20 小分子S3的分子結構…......................................................26
圖1-21 (a) Dimer-BT-EH及(b) Dimer-BT-TPA的分子結構......26
圖3-1 微波加熱(左)與油浴加熱(右)系統的溫度分布.............….56
圖3-2 Stille coupling 的反應機構…..............................................57
圖3-3 S1與S2的結構…….......................................................….58
圖3-4 Br-BT-EH之偶合反應..........................................................60
圖3-5 Sn-BT-EH之偶合反應..........................................................61
圖3-6 S3、Dimer-BT-EH及Dimer-BT-TPA在
氯仿中的UV-Vis 吸收光譜圖...............................................62
圖3-7 S3的分子構型.........................................................................63
圖3-8 Dimer-BT-EH的分子構型.......................................................63
圖3-9 Dimer-BT-EH的分子構型.......................................................64
圖3-10 S3之前置軌域電子分布..........................................................65
圖3-11 Dimer-BT-EH之前置軌域電子分布.......................................66
圖3-12 Dimer-BT-TPA之前置軌域電子分布.....................................66
圖3-13 Dimer-BT-TPA在氯仿中及成膜後的UV-Vis 吸收光譜...68
圖3-14 Dimer-BT-TPA在氯仿中及成膜時的UV-Vis吸收光譜圖..68
圖3-15 S3溶於電解質溶液(0.1 M TBAPF6 in dichloromethane)
之循環伏安圖.......................................................................69
圖3-16 Dimer-BT-EH 溶於電解質溶液(0.1 M TBAPF6 in
dichloromethane)之循環伏安圖............................................70
圖3-17 Dimer-BT-TPA 溶於電解質溶液 (0.1 M TBAPF6 in
dichloromethane)之循環伏安圖..............................................70
圖3-18 S3、Dimer-BT-EH、Dimer-BT-TPA、P3HT及PC61BM的
能階分布圖..............................................................................71
圖3-19 ITO/PEDOT:PSS/ S3:PC71BM/Ca/Al 元件之I-V curve........73
圖3-20 ITO/PEDOT:PSS/ S3:PC71BM/Ca/Al 元件之I-V curve........74
圖3-21 ITO/PEDOT:PSS/ p-type:PC71BM/Ca/Al 元件之I-V curve..75
圖3-22 ITO/PEDOT:PSS/ p-type:PC71BM(1:5)/Ca/Al 元件IPCE....76

表目錄
表 1-1 DERHD7T、DR3TBDT的UV-Vis吸收光譜數據..................24
表 1-2 DERHD7T、DR3TBDT與PC61BM混摻................................24
表 3-1 Dimer-BT-EH及Dimer-BT-TPA的光學數據..........................62
表 3-2 S3、Dimer-BT-EH及Dimer-BT-TPA電化學相關數據..........71
表 3-3 S3與PC71BM混參所組成的BHJ元件之光電參數...............73
表 3-4 S3與PC71BM混參所組成的BHJ元件之光電參數...............74
表 3-5 S3、Dimer-BT-EH及Dimer-BT-TPA與PC71BM混摻
所組成的BHJ元件之光電參數..............................................75

附錄
附圖一、1H NMR spectrum of DTT-Th...................................................85
附圖二、1H NMR spectrum of Br-BT-T-EH............................................86
附圖三、1H NMR spectrum of T-BT-T-EH..............................................87
附圖四、1H NMR Br-T-BT-T-EH spectrum of.........................................88
附圖五、1H NMR spectrum of S3............................................................89
附圖六、13C NMR spectrum of S3...........................................................90
附圖七、1H NMR Dimer-BT-EH spectrum of..........................................91
附圖八、1H NMR spectrum of BT-TPA....................................................92
附圖九、1H NMR spectrum of Dimer-BT-TPA........................................93
附圖十、ferrocene之循環伏安圖...........................................................94
附圖十一、PC61BM之循環伏安圖..........................................................94
參考文獻 1. http://www.apogeeinstruments.com/
2. http://www.greenrhinoenergy.com/solar/
3. Holger Spanggaard, Frederik C. Krebs. “A brief history of the development of organic and polymeric photovoltaics”. Energy Mater. Sol. Cells, 2004, 83, 125.
4. A.E. Becquerel, “Mémoire sur les effets électriques produits sous l’influence des rayons solaires” Compt. Rend. Acad. Sci. 1839, 9, 561
5. D. Kearns, M. J. Calvin, “Photovoltaic Effect and Photoconductivity in Laminated Organic Systems”, Chem. Phys. 1958, 29, 950
6. H. Kallmann and M. Pope, “Photovoltaic Effect in Organic Crystals”, Chem. Phys. 1959, 30, 585.
7. G.M. Delacote, J.P. Fillard, F. Marco, Solid State Commun. 1964, 2, 373.
8. C. W. Tang. “Two‐layer organic photovoltaic cell”. Appl. Phys. Lett.1986, 48, 183.
9. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”. Science, 1995, 270, 1789.
10. B. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4 %”. Adv. Mater. 2010, 22, E135.
11. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”. Nat. Photonics, 2012, 6, 591.
12. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, and Y. Chen. “Small Molecules Based on Benzo[1,2-b:4,5-b’]dithiophene Unit for High-Performance Solution-Processed Organic Solar Cells”. J. Am. Chem. Soc. 2012, 134, 16345.
13. A. K. Ghosh and T. Feng, “Merocyanine organic solar cells”. Appl, Phys 1978, 49, 5982.
14. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”. Science, 1992, 258, 1474.
15. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”. Adv. Funct. Mater., 2005, 15, 1617.
16. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger. “Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %”, Nature Photon., 2009, 3, 297.
17. J. K. Lee, W. L. Ma, C. J. Brabec, J. Y., J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger. “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc., 2008, 130, 3619.
18. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen. “2.5 % efficient organic plastic solar cells”, Appl. Phys. Lett. 2001, 78, 841.
19. G. Li, V. Shrotriya, Y. Yao, and Y. Yang. “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, Appl. Phys. 2005, 98, 043704.
20. S. R. Forrest. “The Limits to Organic Photovoltaic Cell Efficiency”, MRS Bulletin, 2005, 30, 28.
21. L. Chen, Z. Xu, Z. Honga and Y. Yang, “Interface investigation and engineering – achieving high performance polymer photovoltaic devices”, J. Mater. Chem. 2010, 20, 2575.
22. C. J. Brabec, Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the Open Circuit Voltage of Plastic Solar Cells”, Adv. Funct. Mater. 2001, 11, 374.
23. A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs. “Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative”, Appl. Phys. Lett. 2004, 84, 1609.
24. Y. Cheng, S. Yang, and C. Hsu. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”. Chem. Rev. 2009, 109, 5868–5923.
25. S. Gűnes, H. Neugebauer, and N. S. Sariciftci, “Conjugated Polymer-Based Organic Solar Cells”. Chem. Rev. 2007, 107, 1324.
26. Th. B. Singh, N. Marjanović, G. J. Matt, S. Gűnes, N. S. Sariciftci, A. Montaigne Ramil, A. Andreev, H. Sitter, R. Schwődiauer, S. Bauer “High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films”. Org. Electron. 2005, 6, 105.
27. J. C. Hummelen, B. W. Knight, F. LePeq, and F. Wudl. “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives”. J. Org. Chem. 1995, 60, 532.
28. Y. He, H. Chen, J. H. and Y. Li , “A New Acceptor for High-Performance Polymer Solar Cells”. J. Am. Chem. Soc. 2010, 132, 1377.
29. G. Zhao, Y. He, and Y. Li, “6.5 % Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C 60 Bisadduct by Device Optimization”, Adv. Mater. 2010, 22, 4355.
30. Z. Zhang and J. Wang. “Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications”. J. Mater. Chem., 2012, 22, 4178.
31. Y. Sun, G. C.Welch,W. L. Leong, C. J. Takacs, G. C. Bazan and A. J.Heeger. “Solution-processed small-molecule solar cells with 6.7% efficiency”. Nat. Mater. 2012, 11, 44.
32. Z. Li, Guangrui He, X. Wan, Y. Liu, J. Zhou, G. Long, Y. Zuo, M. Zhang, and Y. Chen, “Solution Processable Rhodanine-Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1 %”. Chen, Adv. Energy Mater. 2012, 2, 74.
33. P. Dutta, W. Yang, S. H. Eom, W. Lee, I. N. Kang and S. Lee, “Development of naphtho[1,2-b:5,6-b’]dithiophene based novel small molecules for efficient bulk-heterojunction organic solar cells”Chem. Commun., 2012, 48, 573.
34. S. Wen, J. Pei, P. Li, Y. Zhou, W. Cheng, Q. Dong, Z. Li, W. Tian, “Synthesis and Photovoltaic Properties of Low-Bandgap 4,7-Dithien-2-yl-2,1,3-Benzothiadiazole-Based poly(heteroarylenevinylene)s”. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 2715.
35. A. Yokoyama, R. Miyakoshi, and T. Yokozawa. “Chain-Growth Polymerization for Poly(3-hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity”. Macromolecules, 2004, 37,1169.
36. M. Chen, Y. Chiang, C. Kim, Y. Guo, S. Chen, Y. Liang, Y. Huang, T. Hu, G. Lee, Antonio Facchetti and Tobin J. Marks. ”One-pot [1+1+1] synthesis of dithieno[2,3-b:30,20-d]thiophene (DTT) and their functionalized derivatives for organic thin-film transistors”. Chem. Commun., 2009, 14, 1846.
37. S. C. Cevher, N. A. Unlu, A. C. Ozelcaglayan, D. H. Apaydin, Y. A. Udum, L. Toppare, A. Cirpan. “Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptor-type conjugated polymers”. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 1933.
38. P. Li, B. Ahrens, N. Feeder, P. R. Raithby, S. J. Teatc and M. S. Khan. ”Luminescent digold ethynyl thienothiophene and dithienothiophene complexes; their synthesis and structural characterization”. Dalton Trans. , 2005, 5, 874.
39. C. Kitamura, S. Tanaka, and Y. Yamashita. “Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units”. Chem. Mater. 1996, 8, 570.
40. J. Yum, D. P. Hagberg, S. Moon, K. M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel. “A Light-Resistant Organic Sensitizer for Solar-Cell Applications”, Angew. Chem. Int. Ed. 2009, 48, 1576.
41. C. O. Kappe. “Controlled Microwave Heating in Modern Organic Synthesis”. Angew. Chem. Int. Ed. 2004, 43, 6250.
42. P. W. and C. O. Kappe, “Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides”, Chem. Commun., 2004, 564.
43. B. H. Lipshutz and B. Frieman, “Microwave accelerated, Ni/C-catalyzed cross-couplings of in situ-derived zirconocenes”. Tetrahedron, 2004, 60, 1309.
44. D. Milstein , J. K. Stille, “A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium”. J. Am. Chem. Soc., 1978, 100, 3636.
45. J. K. Stille. “The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles”. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
46. C. Amatore, E. Carré, A. Jutand, H. Tanaka, Q. Ren, S. Torii. ”Oxidative Addition of Aryl Halides to Transient Anionic à-Aryl–Palladium(0) Intermediates—Application to Palladium-Catalyzed Reductive Coupling of Aryl Halides”. Chem. Eur. J. 1996, 2, 957.
47. A. L. Casado, J. A. Casares, and P. Espinet. “An Aryl Exchange Reaction with Full Retention of Configuration of the Complexes: Mechanism of the Aryl Exchange between [PdR2L2] Complexes in Chloroform (R = Pentahalophenyl, L = Thioether)”. Organometallics 1997, 16, 5730.
48. V. Farina, B. Krishnan, D. R. Marshall, and G. P. Roth. “Palladium-Catalyzed Coupling of Arylstannanes with Organic Sulfonates: A Comprehensive Study”. J. Org. Chem. 1993, 58, 5434.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明