參考文獻 |
1. Cieslak, M., T. Headley, and A. Romig, The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metallurgical Transactions A, 1986. 17(11): p. 2035-2047.
2. Huang, E., et al., A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY< sup>® C-22HS< sup> TM alloy. International Journal of Fatigue, 2007. 29(9): p. 1812-1819.
3. Huang, E.W., et al., Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy. Applied Physics Letters, 2008. 93(16): p. 161904-3.
4. Manning, P. and J.-D. Schobel, Hastelloy Alloy C-22--a New and Versatile Material for the Chemical Process. Werkst. Korros., 1986. 37(3): p. 137-145.
5. Huang, E.-W., et al., Evolution of microstructure in a nickel-based superalloy as a function of ageing time. Philosophical Magazine Letters, 2011. 91(7): p. 483-490.
6. Pike, L.M. and D.L. Klarstrom, A New Corrosion Resistant Ni-Cr-Mo Alloy with High Strength. CORROSION 2004, 2004.
7. Kumar, M. and V.K. Vasudevan, Deformation-induced pseudo-twinning and a new superstructure in Ni2Mo precipitates contained in a Ni-25Mo-8Cr alloy. Acta Materialia, 1996. 44(9): p. 3575-3583.
8. Kumar, M. and V. Vasudevan, Ordering reactions in an Ni 25Mo 8Cr alloy. Acta materialia, 1996. 44(4): p. 1591-1600.
9. Summers, T.E., R. Rebak, and R. Seeley. Influence of Thermal Aging on the Mechanical and Corrosion Properties of C-22 Alloy Welds. in TMS Fall Meeting, St. Louis, MO. 2000.
10. Arya, A., et al., Effect of chromium addition on the ordering behaviour of Ni–Mo alloy: experimental results vs. electronic structure calculations. Acta materialia, 2002. 50(13): p. 3301-3315.
11. Lu, Y.L., et al., Strengthening domains in a Ni–21Cr–17Mo alloy. Scripta Materialia, 2007. 56(2): p. 121-124.
12. Huang, E.-W., et al., Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008. 24(8): p. 1440-1456.
13. Reed-Hill, R.E., Physical metallurgy principles. Vol. 29. 1972: Van Nostrand New York.
14. Chen, Z., N. Kioussis, and N. Ghoniem, Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Physical Review B, 2009. 80(18): p. 184104.
15. Feng, J., et al., Molecular dynamical simulation of the behavior of early precipitated stage in aging process in dilute Cu–Cr alloy. Journal of Applied Physics, 2010. 107(11): p. 113514-113514-6.
16. Gornostyrev, Y.N., I. Kar’kin, and L. Kar’kina, Interaction of dislocations with nanoprecipitates of the metastable phase and dispersion strengthening of the Fe-Cu alloy. Physics of the Solid State, 2011. 53(7): p. 1388-1396.
17. Singh, C., A. Mateos, and D. Warner, Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip. Scripta Materialia, 2011. 64(5): p. 398-401.
18. Terentyev, D., S. Hafez Haghighat, and R. Schaublin, Strengthening due to Cr-rich precipitates in Fe–Cr alloys: Effect of temperature and precipitate composition. Journal of Applied Physics, 2010. 107(6): p. 061806-061806-8.
19. Yip, S., Handbook of Materials Modeling. 2005: Springer.
20. Zhou, X.W., R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 2004. 69(14): p. 144113.
21. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995. 117(1): p. 1-19.
22. Rapaport, D.C., The art of molecular dynamics simulation. 2004: Cambridge university press.
23. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. 2001: Academic press.
24. Chang, J., et al., Molecular dynamics simulations of motion of edge and screw dislocations in a metal. Computational Materials Science, 2002. 23(1–4): p. 111-115.
25. Chandler, D., Introduction to modern statistical mechanics. Introduction to Modern Statistical Mechanics, by David Chandler, pp. 288. Foreword by David Chandler. Oxford University Press, Sep 1987. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1987. 1.
26. Grubmüller, H., et al., Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation, 1991. 6(1-3): p. 121-142.
27. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1989: Oxford university press.
28. Horstemeyer, M., M. Baskes, and S. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374.
29. Landau, D.P. and K. Binder, A guide to Monte Carlo simulations in statistical physics. 2005: Cambridge university press.
30. Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p. 6443.
31. Nørskov, J., Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Physical Review B, 1982. 26(6): p. 2875.
32. Finnis, M. and J. Sinclair, A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984. 50(1): p. 45-55.
33. Pettifor, D.G. and D. Pettifor, Bonding and structure of molecules and solids. Vol. 193. 1995: Clarendon Press Oxford.
34. Kelchner, C., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085-11088.
35. Li, J., AtomEye: an efficient atomistic configuration viewer. Modelling and Simulation in Materials Science and Engineering, 2003. 11(2): p. 173-177.
36. Ungar, T., Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 2004. 51(8): p. 777-781.
37. E-Wen Huang, G.C., Yu-Chieh Lo, Bjorn Clausen, Yu-Lih Huang, Wen-Jay Lee Tamas Ungar and Peter K. Liaw, Plastic Deformation of a Nano-Precipitate Strengthened Ni-Base Alloy Investigated by Complementary In Situ Neutron Diffraction Measurements and Molecular-Dynamics Simulations. Advanced Engineering Materials, 2012.
38. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
39. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1).
40. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010. 18(1): p. 015012.
41. Alexander, S. and A. Karsten, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8): p. 085001.
42. Stukowski, A., V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 2012. 20(8): p. 085007.
43. Henderson, A., A Parallel Visualization Application. ParaView Guide, 2007.
44. Squillacote, A.H., The ParaView guide: a parallel visualization application. 2007: Kitware. |