參考文獻 |
1. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002. 47(22–23): p. 3663-3674.
2. Zhao, X., et al., Recent advances in catalysts for direct methanol fuel cells. Energy & Environmental Science, 2011. 4(8): p. 2736.
3. Marković, N.M. and P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 2002. 45(4–6): p. 117-229.
4. Arenz, M., et al., The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. Journal of the American Chemical Society, 2005. 127(18): p. 6819-6829.
5. López-Cudero, A., et al., CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. Journal of Electroanalytical Chemistry, 2010. 644(2): p. 117-126.
6. Vidal-Iglesias, F.J., et al., CO monolayer oxidation on stepped Pt(S) [(n−1)(100)×(110)] surfaces. Electrochimica Acta, 2009. 54(19): p. 4459-4466.
7. Angelucci, C.A., E. Herrero, and J.M. Feliu, Bulk CO oxidation on platinum electrodes vicinal to the Pt(111) surface. Journal of Solid State Electrochemistry, 2007. 11(11): p. 1531-1539.
8. Solla-Gullón, J., et al., CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochemistry Communications, 2006. 8(1): p. 189-194.
9. Farias, M.J.S., et al., On the apparent lack of preferential site occupancy and electrooxidation of CO adsorbed at low coverage onto stepped platinum surfaces. Electrochemistry Communications, 2011. 13(4): p. 338-341.
10. Maillard, F., et al., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discussions, 2004. 125: p. 357.
11. Lee, S.W., et al., Roles of Surface Steps on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol. Journal of the American Chemical Society, 2009. 131(43): p. 15669-15677.
12. Strmcnik, D.S., et al., Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction. Journal of the American Chemical Society, 2008. 130(46): p. 15332-15339.
13. Solla-Gullon, J., et al., Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys, 2008. 10(25): p. 3689-98.
14. Ma, L., et al., High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2009. 54(28): p. 7274-7279.
15. Murthy, A. and A. Manthiram, Direct kinetic evidence for the electronic effect of ruthenium in PtRu on the dissociative adsorption of methanol. Electrochemistry Communications, 2011. 13(4): p. 310-313.
16. Davies, J.C., B.E. Hayden, and D.J. Pegg, The modification of Pt(110) by ruthenium: CO adsorption and electro-oxidation. Surface Science, 2000. 467(1–3): p. 118-130.
17. Teliska, M., W.E. O’Grady, and D.E. Ramaker, J. Phys. Chem. B, 2005. 109: p. 8076.
18. Gasteiger, H.A., et al., Electro-oxidation of small organic molecules on well-characterized PtRu alloys. Electrochimica Acta, 1994. 39(11–12): p. 1825-1832.
19. Spendelow, J.S., et al., Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. Journal of Electroanalytical Chemistry, 2004. 568: p. 215-224.
20. Herrero, E., K. Franaszczuk, and A. Wieckowski, Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry, 1994. 98(19): p. 5074-5083.
21. Cao, L., et al., Novel nanocomposite Pt/RuO2x H2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed Engl, 2006. 45(32): p. 5315-9.
22. Ma, J.-H., et al., Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation. Journal of Catalysis, 2010. 275(1): p. 34-44.
23. Maillard, F., et al., Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation. The Journal of Physical Chemistry B, 2005. 109(34): p. 16230-16243.
24. Franceschini, E.A., et al., Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation. Journal of Power Sources, 2011. 196(4): p. 1723-1729.
25. Kaplan, D., et al., Study of core–shell platinum-based catalyst for methanol and ethylene glycol oxidation. Journal of Power Sources, 2011. 196(3): p. 1078-1083.
26. Jiang, X., et al., Atomic Layer Deposition (ALD) Co-Deposited Pt−Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. Chemistry of Materials, 2010. 22(10): p. 3024-3032.
27. Jones, S., et al., Promotion of Direct Methanol Electro-oxidation by Ru Terraces on Pt by using a Reversed Spillover Mechanism. ChemCatChem, 2010. 2(9): p. 1089-1095.
28. Sasaki, K., et al., Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochimica Acta, 2004. 49(22-23): p. 3873-3877.
29. Aricò, A.S., et al., Performance of DMFC anodes with ultra-low Pt loading. Electrochemistry Communications, 2004. 6(2): p. 164-169.
30. Park, K.-W., et al., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. The Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
31. Tess, M.E., et al., Bimetallic Pt/Ru Complexes as Catalysts for the Electrooxidation of Methanol. Inorganic Chemistry, 2000. 39(17): p. 3942-3944.
32. Yang, C., et al., Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation. Journal of Alloys and Compounds, 2008. 448(1-2): p. 109-115.
33. Liu, Y.C., et al., Influence of preparation process of MEA with mesocarbon microbeads supported Pt–Ru catalysts on methanol electrooxidation. Journal of Applied Electrochemistry, 2002. 32(11): p. 1279-1285.
34. Nitani, H., et al., Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Applied Catalysis A: General, 2007. 326(2): p. 194-201.
35. Beard, B.C. and J. Philip N. Ross, The Structure and Activity of Pt-Co Alloys as Oxygen Reduction Electrocatalysts. J. Electrochem. Soc., 1990. 137(11): p. 3368-3374.
36. Appleby, A.J., Catal. Rev., 1970. 4.
37. Jalan, V. and E.J. Taylor, Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid. J. Electrochem. Soc., 1983. 130(11): p. 2299-2302.
38. Zhou, J., et al., Interaction between Pt nanoparticles and carbon nanotubes – An X-ray absorption near edge structures (XANES) study. Chemical Physics Letters, 2007. 437(4-6): p. 229-232.
39. Auer, E., et al., Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 1998. 173(2): p. 259-271.
40. Rodríguez-reinoso, F., The role of carbon materials in heterogeneous catalysis. Carbon, 1998. 36(3): p. 159-175.
41. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1-2): p. 1-24.
42. Park, K.-W., et al., Electrocatalytic Enhancement of Methanol Oxidation at Pt−WOx Nanophase Electrodes and In-Situ Observation of Hydrogen Spillover Using Electrochromism. The Journal of Physical Chemistry B, 2003. 107(18): p. 4352-4355.
43. Chen, A., D.J. La Russa, and B. Miller, Effect of the Iridium Oxide Thin Film on the Electrochemical Activity of Platinum Nanoparticles. Langmuir, 2004. 20(22): p. 9695-9702.
44. Chen, Z., et al., Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells. Electrochemistry Communications, 2005. 7(6): p. 593-596.
45. Villullas, H.M., F.I. Mattos-Costa, and L.O.S. Bulhões, Electrochemical Oxidation of Methanol on Pt Nanoparticles Dispersed on RuO2. The Journal of Physical Chemistry B, 2004. 108(34): p. 12898-12903.
46. Jusys, Z., et al., Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources, 2002. 105(2): p. 297-304.
47. Mann, J., N. Yao, and A.B. Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell†. Langmuir, 2006. 22(25): p. 10432-10436.
48. Shanmugam, S. and A. Gedanken, Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small, 2007. 3(7): p. 1189-93.
49. Liu, H., et al., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 2006. 155(2): p. 95-110.
50. Saha, M.S., R. Li, and X. Sun, Composite of Pt–Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochemistry Communications, 2007. 9(9): p. 2229-2234.
51. Matsui, T., et al., Effect of reduction–oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts. Science and Technology of Advanced Materials, 2006. 7(6): p. 524-530.
52. Shao, Y., G. Yin, and Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007. 171(2): p. 558-566.
53. Chhina, H., S. Campbell, and O. Kesler, An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. Journal of Power Sources, 2006. 161(2): p. 893-900.
54. Gustavsson, M., et al., Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell. Journal of Power Sources, 2007. 163(2): p. 671-678.
55. Ekström, H., et al., Nanometer-thick films of titanium oxide acting as electrolyte in the polymer electrolyte fuel cell. Electrochimica Acta, 2007. 52(12): p. 4239-4245.
56. Hepel, M., et al., Novel dynamic effects in electrocatalysis of methanol oxidation on supported nanoporous TiO2 bimetallic nanocatalysts. Electrochimica Acta, 2007. 52(18): p. 5529-5547.
57. Park, K.-W. and K.-S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007. 9(9): p. 2256-2260.
58. Xiong, L. and A. Manthiram, Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel Cells. Electrochimica Acta, 2004. 49(24): p. 4163-4170.
59. Song, H., et al., Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochemistry Communications, 2007. 9(6): p. 1416-1421.
60. Chen, J.-M., et al., Multi-scale dispersion in fuel cell anode catalysts: Role of TiO2 towards achieving nanostructured materials. Journal of Power Sources, 2006. 159(1): p. 29-33.
61. Song, H., et al., TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. Journal of Power Sources, 2007. 170(1): p. 50-54.
62. Shanmugam, S., et al., Synthesis and Characterization of TiO2@C Core−Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities. Chemistry of Materials, 2006. 18(9): p. 2275-2282.
63. Mentus, S., et al., Conducting carbonized polyaniline nanotubes. Nanotechnology, 2009. 20(24): p. 245601.
64. Shao, Y., et al., Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2008. 79(1): p. 89-99.
65. Matter, P.H., E. Wang, and U.S. Ozkan, Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from SiO2- and MgO-supported metal particles. Journal of Catalysis, 2006. 243(2): p. 395-403.
66. Lu, A., et al., Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures. Chemistry of Materials, 2003. 16(1): p. 100-103.
67. Kruk, M., et al., Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous and Mesoporous Materials, 2007. 102(1–3): p. 178-187.
68. Matter, P.H., et al., Oxygen Reduction Reaction Catalysts Prepared from Acetonitrile Pyrolysis over Alumina-Supported Metal Particles. The Journal of Physical Chemistry B, 2006. 110(37): p. 18374-18384.
69. Lei, Z., et al., Nickel-Catalyzed Fabrication of SiO2, TiO2/Graphitized Carbon, and the Resultant Graphitized Carbon with Periodically Macroporous Structure. Chemistry of Materials, 2006. 19(3): p. 477-484.
70. Lei, Z., et al., Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 2009. 19(33): p. 5985-5995.
71. Jia, Y.F., B. Xiao, and K.M. Thomas, Adsorption of Metal Ions on Nitrogen Surface Functional Groups in Activated Carbons. Langmuir, 2001. 18(2): p. 470-478.
72. Oh, J.-G., C.-H. Lee, and H. Kim, Surface modified Pt/C as a methanol tolerant oxygen reduction catalyst for direct methanol fuel cells. Electrochemistry Communications, 2007. 9(10): p. 2629-2632.
73. Maiyalagan, T., B. Viswanathan, and U.V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt – Alternate anodes for fuel cell applications. Electrochemistry Communications, 2005. 7(9): p. 905-912.
74. Aricò, A.S., et al., Effect of PtRu alloy composition on high-temperature methanol electro-oxidation. Electrochimica Acta, 2002. 47(22–23): p. 3723-3732.
75. Zhao, X., et al., Enhanced activity of Pt nano-crystals supported on a novel TiO2@N-doped C nano-composite for methanol oxidation reaction. Journal of Materials Chemistry, 2012. 22(37): p. 19718. |