博碩士論文 100324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.222.110.231
姓名 蔡雅鈞(Ya-chen Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Preparation and Characterization of Deltamethrin/Syndiotactic Polypropylene Solid Dispersion Based Filaments)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文的研究主旨在於探討以固體分散體理論為基礎製備出的含有溴氰菊酯的聚丙烯纖維的製備方法以及對於其物性上的鑑定結果。
在本篇研究中,我們模擬溼式紡絲法,將含有溴氰菊酯與聚丙烯的混合溶液利用針筒注入凝固浴中形成纖維狀的溴氰菊酯與聚丙烯的混合物。為了挑選適合的溶劑來製備含藥纖維,我們對溴氰菊酯進行了初步溶劑篩選。對於溴氰菊酯來說,一共有二十一個良好溶劑(溶解度 5mg/mL),和兩個不良溶劑(溶解度 5mg/mL);藉由初步溶劑篩選的結果,我們建立了溴氰菊酯的form space,接著利用form space,我們可以準確的挑選出適當的溶劑來進行模擬溼式紡絲法。
我們使用了多種分析儀器來針對樣品的各種性質做了鑑定。藉由低溫示差掃描熱分析儀測量溴氰菊酯與聚丙烯固態分散薄膜及纖維的熔點和玻璃轉化溫度;利用傅立葉轉換紅外線光譜儀來鑑定聚丙烯在薄膜及纖維狀下的形態以及測試溴氰菊酯與聚丙烯固態分散薄膜中兩者之間是否有分子間作用力的存在;含有溴氰菊酯的聚丙烯纖維的晶粒尺寸可以透過X光繞射圖譜計算獲得;附有加熱裝置的偏光顯微鏡可以透過加熱過程中的相變化來判斷溴氰菊酯與聚丙烯熔融後混合介面中的成分;最後我們進行溶離試驗來比較不同比例的含有溴氰菊酯的聚丙烯纖維間的溶離速率。
經過一連串的實驗結果,我們發現在所有比例中溴氰菊酯與聚丙烯之間都是不互溶的;並且兩者分子之間並沒有任何分子作用力的存在。而在不同比例的溴氰菊酯/聚丙烯的纖維中,重量比例為10/90的含藥纖維所測量出來溴氰菊酯晶粒尺寸為6.9奈米;比例20/80的是13.4奈米;比例30/70的是18.9奈米;而比例100/0的是47.1奈米,其溶離速率的快慢為10/90 > 20/80 > 30/70 > 100/0。接著使用Korsemeyer-Peppas model 對溶離速率曲線作迴歸,所有得到的n值(release exponent)皆小於5,這代表溴氰菊酯是從多孔隙的纖維釋放出來的。
綜合X光繞射圖譜與溶離速率曲線的結果,我們推測奈米化的溴氰菊酯晶粒增加了其表面面積,而增加的表面面積也代表病媒蚊與藥物的接觸面積增加,因此病媒蚊的死亡率也可以相對的提升,進而達到更好的瘧疾防護效率。不僅如此,模擬溼式紡絲法提供了與現有的長效型蚊帳傳統生產方法不一樣的好處,例如:對於熔融紡絲法而言,如果紡絲品是較高熔點的高分子,模擬濕式紡絲法可以避免了低熔點藥物的裂解,並且其相較於熔融紡絲法較低溫度的製程可以節省能源。
摘要(英) The aim of this thesis is to prepare and characterization solid dispersion based deltamethrin/syndiotactic polypropylene(sPP) filaments by the solvent method. We use the imitative wet spinning (needle injection) method to prepare deltamethrin/sPP filaments. Initial solvent screening was used to establish the form space of deltamethrin. There were 21 good solvents and two bad solvents for deltamethrin. From the form space of deltamethrin, we chose the suitable solvent which could be used to imitative wet spinning process. The melting points and glass transition temperatures of solid dispersions samples could be determined by LTDSC. FT-IR was used to observe the polymorphic form of sPP and interaction between deltamethrin and sPP. XRD was used to determine the crystallite sizes of deltamethrin in deltamethrin/sPP filaments. HSPOM was used to observe the melting and crystallization behaviors of samples. The dissolution tests were used to compare the dissolution rates in different ratios of deltamethrin/sPP filaments. Deltamethrin and sPP were immiscible in all the ratios of solid dispersions samples. The FTIR spectra did not show any peak shift which indicated that was no interaction between deltamethrin and sPP. The deltamethrin/sPP filaments with weight ratios of 10/90, 20/80, 30/70, and 100/0 gave the deltamethrin crystallite sizes of 6.9, 13.4, 18.9 and 47.1 nm, respectively. The dissolution rates of deltamethrin/sPP filaments were arranged in the descending order according to the weight ratios of 10/90 > 20/80 > 30/70 > 100/0. The Korsemeyer-Peppas model was used to fit the dissolution profiles. All n values were < 0.5 which meant that the drug was released from a porous system. From XRD patterns and dissolution profiles, we believed that the nanosized deltamethrin crystallites within the solid dispersion based filaments increased the surface area of deltamethrin which could increase the mortality of anopheles by increasing the contact area between anopheles and the insecticide.
關鍵字(中) ★ 含藥型蚊帳
★ 固態分散體
關鍵字(英)
論文目次 摘要 ........................ I
Abstract ....................III
Acknowledgement ............. V
Table of contents ........... VI
List of Figures ............. X
List of Tables .................XIV
Chapter 1 Executive Summary .................. 1
1.1 Introduction ............................ 1
1.2 Brief Introduction of Deltamethrin ............... 4
1.3 Brief Introduction of Syndiotactic Polypropylene................................... 6
1.4 Conceptual Framework................... 10
1.5 References ....................... 12
Chapter 2 Analytical Instruments ........................ 19
2.1 Introduction ....................................... 19
2.2 Spectroscopy Analysis Methods ................. 22
2.2.1 Fourier Transform Infrared (FT-IR) Spectroscop......... 22
2.2.2 Ultraviolet-Visible Molecular Absorption Spectrometer (UV/Vis) ................. 24
2.3 Thermal Analysis Method .................................. 27
2.3.1 Thermogravimetric Analysis (TGA) ............................ 27
2.3.2 Low Temperature Differential Scanning Calorimetry (LT-DSC) .................... 28
2.4 Crystallographic Analysis Method ....................................... 32
2.4.1 Powder X-ray Diffractometry (PXRD) ........................................................... 32
2.5 Microscopic Methods ................................. 36
2.5.1 Hot Stage Polarized Optical Microscopy (HSPOM) ............. 36
2.6 Conclusions ................................... 39
2.7 References ................................... 40
Chapter 3 Preparation and Characterize of Deltamethrin/Syndiotactic Polypropylene Solid Dispersions ................................................. 43
3.1 Introduction ................... 43
3.1.1 Insecticide-treated Nets .............. 43
3.1.2 Solid dispersions ................................. 45
3.2 Materials ...................................... 51
3.2.1 Chemicals ........................................ 51
3.2.2 Solvents ................................. 51
3.3 Experimental Procedures ......................... 55
3.3.1 Initial solvent screening of deltamethrin ......................................................... 55
3.3.2 Preparation of deltamethrin/sPP solid dispersions .......................................... 55
3.3.3 Preparation of deltamethrin/sPP filaments ............................................... 55
3.3.4 Miscibility test ....................... 56
3.3.5 Crystallization Behavior ......................... 56
3.3.6 Dissolution studies ........................... 56
3.3.7 Analytical Measurements ...................... 57
3.4 Results and Discussions .......................... 61
3.4.1 Characterization of Deltamethrin and sPP................ 61
3.4.2 Form Space of Deltamethrin.................. 66
3.4.3 DSC Studies ......................... 69
3.4.4 Miscibility Studies ................ 74
3.4.4 FT-IR studies ............................... 75
3.4.5 X-Ray Diffractometry Studies ............ 76
3.4.6 Crystallization Behavior ........ 78
3.4.7 Dissolution Studies .............................. 80
3.5 Conclusions ........................... 82
3.6 Reference .......................................... 83
Chapter 4 Conclusions and Future Work ................. 89
4.1 Initial solvent screening ............. 89
4.2 Deltamethrin/sPP solid dispersions films and filaments ................................... 90
4.3 Other applications for solid dispersions filaments .................................. 90
4.4 References .................................. 91
參考文獻 Chapter 1
1 Muentener, P.; Schlagenhauf, P.; Steffen, R. Imported malaria(1985–95): trends and perspectives. Bull. World. Health. Organ. 1999, 77(7), 560-566.
2 Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature 2002, 415(6872), 680-685.
3 World Health Organization. The Africa Malaria Report 2003. 2003.
4 Trampuz, A.; Jereb, M.; Muzlovic, I.; Prabhu, R. M. Clinical Review: Severe Malaria. Crit. Care. 2003, 7(4), 315-323.
5 Shiff, C. Integrated Approach to Malaria Control. Clin. Microbiol. Rev. 2002, 15(2), 278-293.
6 Lengeler, C. Insecticide-Treated Bed Nets and Curtains for Preventing Malaria. Cochrane Database Syst Rev 2004, (2), 1-55.
7 Hawley, W. A.; Phillips-Howard, P. A.; ter Kuile, F. O.; Terlouw, D. J.; Vulule, J. M.; Ombok, M.; Nahlen, B.L.; Gimnig, J. E.; Kariuki, S. K.; Kolczak, M. S.; Hightower, A. W. Community-Wide Effects of Permethrin-Treated Bed Nets on Child Mortality and Malaria Morbidity in Western Kenya. Am. J. Trop. Med. Hyg. 2003, 68(4), 121-127.
8 Hii, J. L.; Smith, T.; Vounatsou, P.; Alexander, N.; Mai, A.; Ibam, E.; Alpers, M. P. Area Effects of Bednet Use in a Malaria-Endemic Area in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg. 2001, 95(1), 7-13.
9 Alonso, P. L.; Lindsay, S. W.; Armstrong, J. R.; Conteh, M.; Hill, A. G.; David, P. H.; Fegan, G.; de Francisco, A.; Hall, A. J.; Shenton, F. C. The Effect of Insecticide-Treated Bed Nets on Mortality of Gambian Children. Lancet. 1991, 337(8756), 1499-1502.
10 Tami, A.; Mubyazi, G.; Talbert, A.; Mshinda, H.; Duchon, S.; Lengeler, C. Evaluation of Olyset™ insecticide-Treated Nets Distributed Seven Years Previously in Tanzania. Malaria 2004, 3(19), 1-9.
11 Curtis, C. F.; Lines, J. D. Should DDT be Banned by International Treaty? Parasitol. Today. 2000, 16(3), 119-121.
12 Lengeler, C. Insecticide Treated Bednets and Curtains for Malaria Control (Cochrane Review). The Cochrane Library. 1998, 3.
13 Curtis, C. F.; Mnzava, A. E. Comparison of House Spraying and Insecticide treated Nets for Malaria Control. Bull World Health Organ. 2000, 78(12), 1389-1400.
14 Mnzava, A. E. P.; Ntuli, V. M.; Sharp, B.; Ngxongo, S.; Mthembu, J. D.; le Sueur, D. House Spraying and Replastering in KwaZulu-Natal. S. Afr. Med. J. 1988, 88, 1024–1028.
15 Diehlmann, H.; Invest, J.A. Deltamethrin Tablet Formulation for the Treatment of Bednets. Proceed. of the 3rd Intern. Conf. on Urban Pests., 457-462, Prague, Czech Republic, July 1999.
16 Gross, L. Resolving the Family Tree of Placental Mammals. PLoS Biology 2006, 4(4), 0467-0481.
17 World Health Organization.Safety of Pyrethroids for Public Health Use. WHO/CDS/WHOPES/GCDPP/2005.10, 2005.
18 Mestres, R.; Mestres, G. Deltamethrin: uses and environmental safety. Rev. Environ. Contam. Toxicol. 1992, 124, 1-18.
19 Gibson, R. W.; Rice, A. D.; Sawicki, R. M. Effects of the Pyrethroid Deltamethrin on the Acquisition and Inoculation of Viruses by Myzus Persicae. Ann. Appl. Biol. 1982, 100(1), 49-54.
20 Barlow, S. M.; Sullivan, F. M.; Lines, J. Risk Assessment of the Use of Deltamethrin on Bednets for the Prevention of Malaria. Food. Chem. Toxicol. 2001, 39(5), 407-422.
21 Wouters, W.; Van Den Bercken, J. Action of Pyrethroid. Gen. Pharmacol. 1978, 9(6), 387-398.
22 Hanson, K.; Kikumbih, N.; Schellenberg, J. K.; Mponda, H.; Nathan, R.; Lake, S.; Mills, A.; Tanner, M.; Lengeler, C. Cost-Effectiveness of Social Marketing of Insecticide-Treated Nets for Malaria Control in the United Republic of Tanzania. Bull. World Health Organ. 2003, 81(4), 269–276.
23 Natta, G.; Pasquon, I.; Zambelli, A. Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer. J. Am. Chem. Soc. 1962, 84(8), 1488–1490.
24 Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. Syndiospecific Propylene Polymerizations with Group IVB Metallocenes. J. Am. Chem. Soc. 1988, 110(18), 6255–6256.
25 Supaphol, P.; Spruiell, J. E. Isothermal Melt- and Cold-Crystallization Kinetics and Subsequent Melting Behavior in Syndiotactic Polypropylene: A Differential Scanning Calorimetry Study. Polymer 2001, 42(2), 699-712.
26 Sun, L.; Shamshoum, E.; DeKunder, G. Effects of Blending, Nucleation and Visbreaking on Processability and Properties of Syndiotactic Polypropylene in Injection Molding. J. Eng. Appl. Sci. 1996, 2, 1965-1969.
27 Schardl, J.; Sun, L.; Kimura, S.; Sugimoto, R. Potential Film Applications for Syndiotactic Polypropylene. J. Plastic. Film. Sheet. 1996, 12(2), 157-164.
28 Schardl, J.; Sun, L.; Kimura, S.; Sugimoto, R. Syndiotactic Polypropylene Overview Clear Impact Polymer. SPE-ANTEC Proceedings 1995, 3, 3414-3416.
29 Loos, J.; Schimanski, T.; Morphology–Mechanical Property Relations in Syndiotactic Polypropylene (sPP) Fibers. Polym. Eng. Sci. 2000, 40(3), 567-572.
30 Zhang, X.; Li, R.; Kong, L.; Wang, D. Stress-Induced Structure Transition of Syndiotactic Polypropylene via Melt Spinning. Polymer 2008, 49(5), 1350-1355.
31 Meusz, M.; Ruff, C. J.; Yamori, A. Syndiotactic Polypropylene Solutions and Applications Therefor. W.O. patent 1994, WO 1994024195 A1.
32 Lee, K. H.; Ohsawa, O.; Watanabe, K.; Kim, I. S.; Givens, S. R.; Chase, B.; Rabolt, J. F. Electrospinning of Syndiotactic Polypropylene from a Polymer Solution at Ambient Temperatures. Macromolecules 2009, 42(14), 5215–5218.
33 Watanabe, K.; Nakamura, T.; Kim, B. S.; Kim, I. S. Effect of Organic Solvent on
Morphology and Mechanical Properties of Electrospun Syndiotactic Polypropylene
Nanofibers. Polym. Bull. 2011, 67(9), 2025-2033.
34 Corradini, P.; Natta, G.; Ganis,P.; Temussi, P.A. Crystal Structure of Syndiotactic Polypropylene. J. Polym. Sci. C. 1967, 16, 2477-2484.
35 Lotz, B.; Lovinger A. J.; Cais, R. E. Crystal Structure and Morphology of Syndiotactic Polypropylene Single Crystals. Macromolecules 1988, 21(8), 2375–2382.
36 Natta, G.; Peraldo, M.; Allegra, G. Crystalline Modification of Syndiotactic Polypropylene having a Zia-Zag Chain Conformation. Makromol. Chem. 1964, 75(1), 215-216.
37 Chatani, Y.; Maruyama, H.; Noguchi, K.; Asanuma T.; Shiomura, T. Crystal Structure of the Planar Zigzag Form of Syndiotactic Polypropylene. J. Polym. Sci. Part C 1990, 28(13), 393-398.
38 Chatani, Y.; Maruyama, H.; Asanuma, T.; Shiomura, T. Structure of a New Crystalline Phase of Syndiotactic Polypropylene. J. Polym. Sci. Polym. Phys. 1991, 29(13), 1649-1652.
39 De Rosa, C.; Gargiulo, M. C.; Auriemma, F.; de Ballesteros, O. R.; Razavi, A. Elastic Properties and Polymorphic Behavior of Fibers of Syndiotactic Polypropylene at Different Temperatures. Macromolecules 2002, 35(24), 9083-9095.
40 Lovinger, A. J.; Lotz, B.; Davis, D. D. Interchain Packing and Unit Cell of Syndiotactic Polypropylene. Polmer 1990, 31(12), 2253-2259.
41 Lovinger, A. J.; Davis, D. D.; Lotz, B. Temperature Dependence of Stucture and Morphology of Syndiotactic Polypropylene and Epitaxial Relationships with Isotactic Polypropylene. Macromolecules 1991, 24(2), 552-560.
42 Lovinger, A. J.; Lotz, B.; Davis, D. D.; Padden, F. J. Stucture and Defects in Fully Syndiotactic Polypropylene. Macromolecules 1993, 26(14). 3494-3503.
43 Rosa, C. D.; Auriemma, F.; Vinti, V. Disordered Polymorphic Modifications of Form I of Syndiotactic Polypropylene. Macromolecules 1997, 30(14),4137-4146.
44 Rosa, C. D.; Corradini, P. Crystal Structure of Syndiotactic Polypropylene. Macromolecules 1993, 26(21), 5711-5718.
45 Rastogi, S.; La Camera, D.; van der Burgt, F.; Terry, A. E.; Cheng, S. Z. D. Polymorphism in Syndiotactic Polypropylene: Thermodynamic Stable Regions for Form I and Form II in Pressure−Temperature Phase Diagram. Macromolecules 2001, 34(22), 7730-7736.
46 Rosa, C. D.; Auriemma, F.; Vinti, V. On the Form II of Syndiotactic Polypropylene. Macromolecules 1998, 31(21), 7430-7435.
47 Asakura, T.; Aoki, A.;Date, T.; Demura, M.; Asanuma, T. High Resolution Solid State 13C NMR Spectroscopy of Polypropylene with Very High Syndiospecificity. Polym. J. 1996, 28(1), 24-29.
48 Mount, D. L.; Green, M. D. Insecticide-Impregnated Fabric and Method of Production. U.S. patent 2005, US6896892 B2.
49 Okuno, T.; Itoh, T. Insect Controlling Material. W.O. patent 2008, WO2008004711 A2
Chapter 2
1 Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy. 3rd Ed.; Thomson Learning, Mississippi, 2001; Chapter 2, pp 13-24.
2 Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis. 5thEd.; BROOKS/COLE, Canada, 1997; Chapter 16, p 393.
3 Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis. 5thEd.; BROOKS/COLE, Canada, 1997; Chapter 7, pp 182-183.
4 Rousessac, F.; Rousessac, A. Infrared Apectroscopy. 1st Ed.; John Wiley & Sons, England, 2001; Chapter 10, pp 170-173.
5 Koller, L. R. Ultraviolet Radiation. 2nd Ed.; John Wiley & Sons, New York, 1965; Introduction, pp 1-20.
6 Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis. 5thEd.; BROOKS/COLE, Canada, 1997; Chapter 13, pp 300-303.
7 http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/uvspec.htm
8 Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis. 5thEd.; BROOKS/COLE, Canada,1997; Chapter 31, pp 798-800.
9 Hanies, P. J.; Wilburn, F. W. Thermal Methods of Analysis-Principles. 5thEd; Blackie Academic and Professional, New York, 1995; Chapter 3, pp 63-89.
10 Boldyerva, E. V.; Drebushchak, V. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Drebushchak, T. N.DSC and Adiabatic Calorimetry Study of the Polymorphs of Paracetamol. J. of Therm. Anal. Calor. 2004, 77(2), 607-623.
11 Haines, P. J.; Wilburn, F. W. Thermal Methods of Analysis- Principles, Applications, and Problems. 1st Ed.; Blackie Academic and Professional, New York, 1995; Chpater 3, pp 63-89.
12 Clas, S. D.; Dalton, C. R.; Hancock, B. C. Differential Scanning Calorimetry:
Applications in Drug Development. Pharm. Sci. Technol. Today 1999, 2(8), 311-320.
13 Formica, J. Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall PTR, New Jersey, 1997; Chapter 18, pp 339-353.
14 Murthy, N. S.; Reidinger, F. Matericals Characterizationand Chemical Analysis. Wiley-Vch, New York, 1996; Chapter 7, pp 143-149.
15 Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis. 5thEd.; BROOKS/COLE, Canada,1997; Chapter 31, pp 798-800.
16 Qian, F.; Tao, J.; Desikan, S.; Hussain, M.; Simth, R. L. Mechanistic Investigation of Pluronic based Nano-Crystalline Drug-Polymer Solid Dispersions. Pharm. Res. 2007, 24(8), 1551-1560.
17 Oprea, C.; Ciupina, V.; Prodan,G. Investigation of Nanocrystals Using TEM Micrographs and Electron Diffraction Technique. Rom. J. Phys. 2008, 53(1-2), 223-230.
18 Kriss, T. C.; Kriss, V. M.; Vesna, M. History of the Operating Microscopy: From Magnifying Glass to Microneurosurgery. Neurosurgery 1998, 42(4), 899-907.
19 Carlton, R. L. Pharmaceutical Microscopy. Springer, Pennsylvania, 2001; Chapter 2, p 28.
20 Methods and Techniques for Cell Biology. http://www.cella.cn/jxck/02.ppt
Chapter 3
1 Lengeler, C. Insecticide-Treated Bed Nets and Curtains for Preventing Malaria. Cochrane Database Syst. Rev. 2004, (2), CD000363.
2 World Health Organization. Safety of Pyrethroids for Public Health Use. WHO/CDS/WHOPES/GCDPP/2005.10, 2005, 2.
3 Barlow, S. M.; Sullivan, F. M.; Lines, J. Risk Assessment of the Use of Deltamethrin on Bednets for the Prevention of Malaria. Food. Chem. Toxicol. 2001,39(5), 407-422.
4 Mount, D. L.; Green, M. D. Insecticide-Impregnated Fabric and Method of Production. U.S. patent 2005, US6896892 B2.
5 Okuno, T.; Itoh,T. Insect Controlling Material. W.O. patent 2008, WO2008004711 A2.
6 Sanders, J. H. Wet Spinning Synthetic Fibers.U.S. patent 1962, US 3061402.
7 Sonneck, R.; Bocker T.; Horn, K.; Nentwig, G.; Heinemann, Maren.; Konig, Thomas. Insecticide-Containing Netlike Fabric. U.S. patent 2011, US 20110256198 A1.
8 Meusz, M.; Ruff, C. J.; Yamori, A. Syndiotactic Polypropylene Solutions and Applications Therefor. W.O. patent 1994, WO 1994024195 A1.
9 Goswami, B. C.; Anandjiwala, R. D.; Hall, D. M. Textile Sizing. 1st Ed.; CRC Press, Boca Raton, 2004; Chapter 2, pp 85-86.
10 Woo, E. M.; Cheng, K. Y.; Chen, Y. F.; Su, C. C. Experimental Verification on UCST Phase Diagrams and Miscibility in Binary Blends of Isotactic, Syndiotactic, and Atatic Polypropylene. Polymer 2007, 48(19), 5753-5766.
11 Brettmann, B. K.; Cheng, K.; Myerson, A. S.; Trout, B. L. Electrospun Formulations Containing Crystalline Active Pharmaceutical Ingredients. Pharm. Res. 2012, 30(1), 238-246.
12 Tungprapa, S.; Jangchud, I.; Supaphol, P. Release Characteristics of Four Model Drugs from Drug-Loaded Electrospun Cellulose Acetate Fiber Mats. Polymer 2007, 48(17), 5030-5041.
13 Yu, D. G.; Branford-White, C.; White, K.; Li, X. L.; Zhu, L. M. Dissolution Improvement of Electrospun Nanofiber-Based Solid Dispersions for Acetaminophen. AAPS. PharmSciTech. 2010, 11(2), 809-817.
14 Vasconcelos, T.; Sarmento, B.; Costa, P. Solid Dispersions as Strategy to Improve Oral Bioavailabiliy of Poor Water Soluble Drugs. Drug Discov. Today 2007, 12(23-24), 1068-1075.
15 Sekiguchi, K; Obi, N. Studies on Absorption of Eutectic Mixture. I. A Comparison of the Behavior of Eutectic Mixture of Sulfathiazole and that of Ordinary Sulfathiazole in Man. Chem. Pharm. Bull. 1961, 9(11), 866-872.
16 Levy, G. Effect of Particle Size on Dissolution and Gastrointestinal Absorption Rates of Pharmaceuticals. Am. J. Pharm. Sci. 1963, 135, 78–92.
17 Kaning, J. L. Properties of Fused Mannitol in Compressed Tablets. J. Pharm. Sci. 1964, 53(2), 188–192.
18 Vilhelmsen , T; Eliasen, H; Schaefer, T. Effect of a Melt Agglomeration Process on Agglomerates Containing solid dispersions. Int. J. Pharm. 2005, 303(1-2), 132–142.
19 Kushwaha, A. Solid Dispersion–a Promising Novel Approach for Improving the Solubility of Poorly Soluble Drugs. IJPSR. 2011, 2(8), 2021-2030.
20 Bates, T. R. Dissolution Characteristics of Reserpine-Polyvinylpyrrolidone Co-Precipitates. J. Pharm. Pharmacol. 1969, 21(10), 710-712.
21 Yin, S. X.; Franchini, M.; Chen, J.; Hsieh, A.; Jen, S.; Lee, T.; Hussain, M.; Smith, R. Bioavailability Enhancement of a COX-2 Inhibitor, BMS-347070, from a Nanocrystalline Dispersion Prepared by Spray-Drying. J. Pharm. Sci. 2005, 94(7), 598-607.
22 Pang, J. M.; Luan, Y. X.; Li, F. F.; Cai, X. Q.; Du, J. M.; Li, Z. H. Ibuprofen-Loaded Poly(lactic-co-glycolic acid) Films for Controlled Drug Release. Int. J. Nanomedicine. 2011, 6, 659–665.
23 Zhu, Q.; Harris, M. T.; Taylor, L. S. Modification of Crystallization Behavior in Drug/Polyethylene glycol Solid Dispersions. Mol Pharm. 2012, 9(3), 546-553.
24 Serajuddin, A. T. M. Solid Dispersion of Poorly Water Soluble Drugs: Early Promises, Subsequent Problems, and Recent Breakthroughs. J. Pharm. Sci. 1999, 88(10), 1058-1066.
25 Qian, F.; Huang, J.; Hussain, M. A. Drug-Polymer Solubility and Miscibility: Stability Consideration and Pracital Challenges in Amorphous Solid Dispersion Development. 2010, J. Pharm. Sci. 99(7), 2941-2947.
26 Marsac, P. J.; Li, T.; Taylor, L. S. Estimation of Drug-Polymer Miscibility and Solubility in Amorphous Solid Dispersions using Experimentally Determined Interaction Parameters. Pharm. Res. 2009, 26(1), 139-151.
27 Mooter, G. V. D.; Wuyts, M.; Blaton, N.; Busson, R.; Grobet, P.; Augustijns, P.; Kinget, R. Physical Stabilization of Amorphous Ketoconazole in Solid Dispersions with Polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 2001, 12(3), 261-269.
28 Anderson, N. G. Practical Peocess Research & Development. Academic Press, New York, 2000, pp 88-111.
29 Qian, F.; Tao, J.; Desikan, S.; Hussain, M.; Simth, R. L. Mechanistic Investigation of Pluronic based Nano-Crystalline Drug-Polymer Solid Dispersions. Pharm. Res. 2007, 24(8), 1551-1560.
30 Supaphol, P.; Spruiell, J. E. Thermal Properties and Isothermal Crystallization of Syndiotactic Polypropylenes: Differential Scanning Calorimetry and Overall Crystallization Kinetics. J. Appl. Polym. Sci. 2000, 75(1), 44-59.
31 Gorrasi, G.; Guadagno, L.; Vittoria V. Solvent Induced Polymorphism of Quenched Syndiotactic Polypropylene in Different Liquids. Colloid. Polym. Sci. 2003, 281(5), 469-475.
32 Shen, Y.; Wu, P. Two-Dimensional ATR-FTIR Spectroscopic Investigation on Water Diffusion in Polypropylene Film: Water Bending Vibration. J. Phys. Chen. B. 2003, 107(18), 4224-4226.
33 Sooresh, A.; Kwon, H.; Taylor, R.; Pietrantonio, P.; Pine, M.; Sayes, C. M. Surface Functionalization of Silver Nanoparticles: Novel Applications for Insect Vector Control. Appl. Mater. Interfaces.2011, 3(10), 3779-3787.
34 Gatos, K. G.; Kandilioti, G.; Galiotis, C.; Gregoriou, V. G. Mechanically and Thermally Induced Chain Conformational Transformations between Helical Form I and Trans-Planar Form III in Syndiotactic Polypropylene using FT-IR and Raman Spectroscopic Techniques. Polymer 2004, 45(13), 4453-4464.
35 Sevegney, M. S.; Kannan, R. M.; Siedle, A. R.; Percha, P. A. FTIR Spectroscopic Investigation of Thermal Effects in Semi-Syndiotactic Polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2005, 43(4), 439-461.
36 Grant, I. J.; Ward, I.M. The Infra-Red Spectrum of Syndiotactic Polypropylene. Polymer 1965, 6(5), 223-230.
37 Greenhalgh, D. J.; Williams, A. C.; Timmins, P.; York, P. Solubility Parameter as Predictors of Miscibility in Solid Dispersions. J. Pharm. Sci. 1999, 88(11), 1182-1190.
38 Schmidt, W. Process for Producing An Administration or Dosage Form for Drugs, Reagents or Other Active Ingredients. U.S. Patent 1989, US4849246
39 Nair, R. K.; Kadam, M. M.; Sawant, M. R. Effect on the Solubility, Wettability, and Dispersibility of the β-CD-Deltamethrin Inclusion Complex in Presence of Mixed Surfactant (C14MEA/AOS) Blend. J. Dispers. Sci. Technol. 2006, 27(7), 1015-1019.
40 Rosa, C. D.; Corradini, P. Crystal Structure of Syndiotactic Polypropylene. Macromolecules 1993, 26(21), 5711-5718.
41 D’Addio, S. M.; Prud’homme, R. K. Controlling Drug Nanoparticle Formation by Rapid Precipitation. Adv. Drug. Deliv. Rev. 2011, 63(6), 417-426.
42 Mann, S. Molecular Recognition in Biomineralization. Nature 1988, 332(6160), 119-124.
43 Peppas, N. A. Analysis of Fickian and Non-Fickian Drug Release from Polymers. Pharm. Acta. Helv. 1985, 60(4), 110-111.
44 Costa, P.; Lobo, J. M. S. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13(2), 123-133.
Chapter 4
1 Mahakittikun, V.; Boitano, J. J.; Komoltri, C.; Ninsanit, P.;& Wangapai, T. Anti-mite Covers: Potential Criteria for Materials Used Against Dust Mites. Text. Res. J. 2009, 79(5), 436-443.
2 Shi, H.; Xin, J. H. Cosmetic Textiles: concepts, application and prospects. In Proceeding in the 9th Asia Textile Conference.D01-14, TaiChun, Taiwan, June 28-30, 2007
指導教授 李度(Tu Lee) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明