參考文獻 |
1. Whitaker, T. Osram Improves Red, Green LED Performance. 16 (2010).
2. Arturas Zukauskas, M.S.S., Remis Gaska. Introduction to solid-state lighting, (Wiley, 2002).
3. DOE. Solid-state lighting research and development: multi-year program plan. (2011).
4. Schubert, E.F. Light-emitting diodes, (Cambridge University Press, 2003).
5. F. W. Mont, K., J. K.Schubert, M. F.Schubert, E. F.Siegel, R. W. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. Journal of Applied Physics 103, 083120-083125 (2008).
6. F.W. Mont, J.K.K., M. F. Schubert, H. Luo, E. F. Schubert, R.W. Siegel. Light-emitting diodes: research, manufacturing, and application XI, . in SPIE Symp. Ser. Vol. 6486 6486C1-6486C8 (2007).
7. Narendran, N.G., Y.Freyssinier, J. P.Yu, H.Deng, L. Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth 268, 449-456 (2004).
8. Nadarajah Narendran, Y.G. Life of LED-Based White Light Sources. IEEE/OSA JOURNAL OF DISPLAY TECHNOLOGY 1, 167-171 (2005).
9. Keeping, S. LED Heat Dissipation and Lowering Thermal Resistance of LED Lighting Substrates. (Electronic Products Editorial Consortium, 2008).
10. Chen, C.W.Y., X. S.Chiang, A. S. T. An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals. Journal of the Taiwan Institute of Chemical Engineers 40, 296-301 (2009).
11. J.T.Bai. National central university (2010).
12. M. Baniassadi, F.A., A. Laachachi, S. Ahzi, H. Garmestani, F. Hassouna, A. Makradi, V. Toniazzo, D. Ruch. Using SAXS approach to estimate thermal conductivity of polystyrene/zirconia nanocomposite by exploiting strong contrast technique. Acta materialia 59, 2742-2748 (2011).
13. Lee, W.S.H., I. Y.Yu, JinKim, S. J.Byun, K. Y. Thermal characterization of thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Thermochimica Acta 455, 148-155 (2007).
14. Sun Lee, W.Y., Jin. Comparative study of thermally conductive fillers in underfill for the electronic components. Diamond and Related Materials 14, 1647-1653 (2005).
15. Van Driel, W.D.F., X.J. Solid State Lighting Reliability: Components to Systems, (Springer, 2013).
16. Krames MR, S.O., Mueller-Mach R, Mueller GO, Z hou L, Harbers G, Craford MG. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 3, 160-175 (2007).
17. Smith, W. Modern Optical engineering, (MGraw-Hill, 2008).
18. CIE041-1978. Light as a true visual quantity:Principles of measurement. (CIE Commission Internationale de L’Eclairage, 1978).
19. Klaus Mullen, U.S. Organic Light Emitting Devices: Synthesis, Properties and Applications, (Wiley, 2006).
20. J.C. Huang, Y.P.C., M. Wei, R.D. Deanin. Comparison of epoxy resins for applications in light-emitting diodes. Advances in Polymer Technology 23, 298-306 (2004).
21. S. S. LEE, S.C.K. Physical Aging of Polydimethylsiloxane-Modified Epoxy Resin. Journal of Applied Polymer Science 69, 1291-1300 (1998).
22. Kimihiro Matsukawa, K.H., Hiroshi Inoue, Akinori Fukuda and Yasushi Arita. Preparation and Curing Behavior of Siloxane-Containing Epoxy Resins. Journal of Polymer Science: Part A Polymer Chemistry 30, 2045-2048 (1992).
23. Barton D.L., O.M., Perlin P., Helms C. J., Bern N.H. Life tests and failure mechanisms of GaN/AlGaN/InGaN light-emmiting diodes. SPIE 17, 3279 (1998).
24. Stephen J. Clarson, M.J.O., Steven D. Smith, Mark E. Van Dyke. Advances in Silicones and Siloccone-Modified Materials, (American Chemical Society, 2010).
25. Pulickel M. Ajayan, L.S.S., Paul V. Braun. Nanocomposite Science and Technology, (WILEY-VCH, 2004).
26. M.Sumita, Y.T., K. Miyasaka, K. Ishikawa. Tensile yield stress of polypropylene composites filled with ultrafine particles. Journal of Materials Science 18, 1758 (1983).
27. Min Zhi Ronga, M.Q.Z., Yong Xiang Zhenga, Han Min Zenga, K. Friedrich. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301-3304 (2001).
28. J.I. Honga, K.S.C., C. I. Chunga, L. S. Schadlera and R. W. Siegela. Retarded Cross-linking in ZnO-low-density Polyethylene Nanocomposites. Journal of Materials Research 17, 940-943 (2002).
29. Gianfranco Carotenuto, Y.-S.H., and Egon Matijević. Preparation and Characterization of Nanocomposite Thin Films for Optical Devices. Industrial & Engineering Chemistry Research 35, 2929-2932 (1996).
30. Lorenz Zimmennanna, M.W., Walter Caseria and Ulrich W. Sutera. High refractive index films of polymer nanocomposites. Journal of Materials Research 8, 1742-1748 (1993).
31. Tasoula Kyprianidou-Leodidou, W.C., Ulrich W. Suter. Size Variation of PbS Particles in High-Refractive-Index Nanocomposites. The Journal of Physical Chemistry B 98, 8992-8997 (1994).
32. Tasoula Kyprianidou-Leodidou, H.-J.A., Yves Wyser, Daniel Vetter, Michele Büchler, Walter Caseri and Ulrich W. Suter. High Refractive Index Materials of Iron Sulfides and Poly(ethylene oxide). Journal of Materials Research 12, 2198-2206 (1997).
33. Y. Zhou, N.T., C. L. Yuan, Y. He, F. G. Shi. One-Component, Low-Temperature, and Fast Cure Epoxy Encapsulant With High Refractive Index for LED Applications. IEEE Transactions on Advanced Packaging 31, 484-489 (2008).
34. H. T. Li, C.-W.H. Enhancement of light efficiency of LED using a novel hight refractive encapsulant. in Electronic Components and Technology Conference 1926-1930 (2008).
35. Z. C. Cui, C.L.L., B. Yang, J.C. Shen, X. P. Su, H. Yang. The research on syntheses and properties of nevel epoxy/polymercaptan curing optical resins with high refractive indices. Polymer 42, 10095-10100 (2001).
36. W.F. Su, Y.C.F., W.P. Pan. Thermal properties of high refractive index epoxy resin system. Thermochimica Acta 392, 385-389 (2002).
37. C.L. Lu, Z.C.C., Y.X. Wang, B. Yang, J.C. Shen. Studies on syntheses and properties of episulfide-type optical resins with high refractive index. Journal of Applied Polymer Science 89, 2426-2430 (2003).
38. Todosiichuk, T.T.Y., N. V.; Menzheres, G. Y.; Kosyanchuk, L. F. . Peculiarities of formation of optically transparent photocurable compound adhesive with high refractive index. Polym. Sci. Ser. D 3, 99-103 (2010).
39. Yano, S.I., T.Shinoda, K.Ikake, H.Hagiwara, T.Sawaguchi, T.Kurita, K.Seno, M. Properties and microstructures of epoxy resin/TiO2 and SiO2 hybrids. Polymer International 54, 354-361 (2005).
40. C .Guan, C.L.L., Liu, Y. F.Yang, B. Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. Journal of Applied Polymer Science 102, 1631-1636 (2006).
41. Ochi, M.N., D.Harada, M. Effect of acetic acid content on in situ preparation of epoxy/zirconia hybrid materials. Journal of Materials Science 45, 6159-6165 (2010).
42. Ochi, M.N., D.Suzuki, Y.Harada, M. Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization. Journal of Materials Science 45, 2655-2661 (2010).
43. Chau, J.L.H.L., H. W.Su, W. F. Fabrication of hybrid surface-modified titania-epoxy nanocomposite films. Journal of Physics and Chemistry of Solids 70, 1385-1389 (2009).
44. Elim, H.I.C., B.Kurata, Y.Sugihara, O.Kaino, T.Adschiri, T.Chu, A. L.Kambe, N. Refractive Index Control and Rayleigh Scattering Properties of Transparent TiO2 Nanohybrid Polymer. Journal of Physical Chemistry B 113, 10143-10148 (2009).
45. Kurata, Y.S., O.Kaino, T.Komatsu, K.Kambe, N. Thermo-optic controllable hybrid photonic polymers containing inorganic nanoparticles. Journal of the Optical Society of America B-Optical Physics 26, 2377-2381 (2009).
46. M. Sangermano, G.M., E. Amerio, R. Bongiovanni, A. Priola, A. Di Gianni, B. Vot, G. Rizza. Preparation and Characterization of Nanostructured TiO2/Epoxy Polymeric Films. Macromolecular Materials and Engineering 291, 517-523 (2006).
47. Li Y, T.P., Viswanath A, Benicewicz BC, Schadler LS. Bimodal Surface Ligand Engineering: The Key to Tunable Nanocomposites. Langmuir 29, 1211-1220 (2012).
48. Tao P, L.Y., Rungta A, Viswanath A, Gao J, Benicewicz BC, et al. TiO2 nanocomposites with high refractive index and transparency. . J Mater Chem 21(2011).
49. Tao P, V.A., Li Y, Siegel RW, Benicewicz BC, Schadler LS. Bulk Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles. Polymer 54, 1639-1646 (2013).
50. Li Y, T.P., Siegel RW, Schadler L. Multifunctional Silicone Nanocomposites for Advanced LED Encapsulation. Mater. Res. Soc. Symp. Proc. 1547, 901 (2013).
51. Noll, W. Chemistry and Technology of Silicone, (Academic Press, 1968).
52. Buestrich, R.K., F.; Popall, M.; Dannberg, P.; Muller-Fiedler, R.; Rosch, O. ORMOCER°R s for Optical Interconnection Technology. Journal of Sol-Gel Science and Technology 20, 181-186 (2001).
53. Schmidt, H. New type of non-crystalline solids between inorganic and organic materials. journal of Non-crystalline solids 73, 681-691 (1985).
54. IES. Electrical and photometric measurements of solid-state lighting products. Vol. LM-79-08 (illuminating engineering society, 2008).
55. IES. Measuring Lumen Maintenance of LED Light Sources. Vol. LM-80-08 (illuminating engineering society, 2008).
56. JESD22-A101-C. Steady State TEmperature Humidity Bias Life Test. (2009).
57. S.H. Wang, Y.S.S., A.S.-T. Chiang, H. F. Hung, M.C. Chen, K. Wood. Carboxylic Acid-Directed Clustering and Dispersion of ZrO2 Nanoparticles in Organic Solvents: A Study by Small-Angle X-ray/Neutron Scattering and NMR. The Journal of Physcal Chemistry C 115, 11941-11950 (2011).
58. R.P. Denkewicz, K.S.T., J.H. Adair. Hydrothermal Crystallization Kinetics of m- ZrQ2 and t- ZA. Journal of Materials Research 5, 2698-2705 (1990).
59. Chuah, G.K. An investigation into the preparation of high surface area zirconia. Catalysis Today 49, 131-139 (1999).
60. A. Benedetti, G.F., F. Pinna, S. Polizzi. Structural properties of ultra-fine zirconia powders obtained by precipitation methods. Journal of Materials Science 25, 1473-1478 (1990).
61. A. Benedetti, G.F., F. Pinna, S. Polizzi. Preparation and Structural Characterization of Ultrafine Zirconia Powders. Journal of the American Ceramic Society 72, 467-469 (1989).
62. Clearfield, A. Crystalline Hydrous Zirconia. Inorganic Chemistry 3, 146-148 (1964).
63. Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl solutions. Journal of Materials Research 5, 161-162 (1990).
64. R. Srinivasan, S.F.S., J.M. Harris, B.H. Davis. Discrepancies in the crystal structures assigned to precipitated zirconia. Journal of Materials Science Letters 10, 352-354 (1991).
65. G. Stefanic, S.P., S. Music. Influence of pH on the hydrothermal crystallization kinetics and crystal structure of ZrO2. Thermochimica Acta 303, 31-39 (1997).
66. WHITNEY, E.D. Observations on the Nature of Hydrous Zirconia. Journal of the American Ceramic Society 53, 697-698 (1970).
67. Miller, J.D. & Ishida, H. Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes. Surface Science 148, 601-622 (1984).
68. Posthumus, W.M., P. C. M. M.Brokken-Zijp, J. C. M.Tinnemans, A. H. A.van der Linde, R. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Journal of Colloid and Interface Science 269, 109-116 (2004).
69. D.W. Schaefer, J.E.M., P. Wiltzius, D.S. Cannell. Fractal Geometry of Colloidal Aggregates. Physical Review Letters 52, 2371-2374 (1984).
70. Chau, J.L.H.L., Y. M.Li, A. K.Su, W. F.Chang, K. S.Hsu, S. L. C.Li, T. L. Transparent high refractive index nanocomposite thin films. Materials Letters 61, 2908-2910 (2007).
71. Lin, Y.-C.Y., Jiun Pyng;Tran, Nguyen T.;He, Yongzhi;Shi, Frank G. Packaging of Phosphor Based High Power White LEDs: Effects of Phosphor Concentration and Packaging Configuration. Journal of Electronic Packaging 133, 011009 (2011).
72. A. Garahan, L.P., J. Yin, I. Saxena. Effective optical properties of absorbing nanoporous and nanocomposite thin films. Journal of Applied Physics 101, 014320-014329 (2007).
73. Yang, C.T., Liu, W.C. & Liu, C.Y. Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package. Microelectronics Reliability 52, 855-860 (2012).
74. Y. Xi, E.F.S. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode foreard voltage method. Applied Physics Letters 85, 2163-2165 (2004).
75. S. Gupta, P.C.R., G. Madras. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polymer Chemistry 2, 221-228 (2011).
76. Yeong-Her Lin, J.P.Y., Yuan-Chang Lin, Nguyen T. Tran, and Frank G. Shi. Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES 33, 761-766 (2010).
77. Steven Abbott, N.H. Nanocoatings:principles and practice, (DEStech Publications, Inc., 2013).
78. Bae, J.-S.K.S.Y.B.-S. Thermal stability of sol–gel derived methacrylate oligosiloxane-based hybrids for LED encapsulants. J Sol-Gel Sci Technol 53, 434-440 (2010).
79. Kim, W.S.Y., K. B.; Bae, B. S. Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique. Journal of Materials Chemistry 15, 4535-4539 (2005).
80. Eo, Y.J.L., T. H.; Kim, S. Y.; Kang, J. K.; Han, Y. S.; Bae, B. S. Synthesis and molecular structure analysis of nano-sized methacryl-grafted polysiloxane resin for fabrication of nano hybrid materials. Journal of Polymer Science Part B-Polymer Physics 43, 827-836 (2005).
81. Moujoud, A.K., W. S.; Bae, B. S.; Shin, S. Y. . Thermally stable optical characteristics of sol-gel hybrid material films. . Applied Physics Letters 88, 101916 (2006).
82. Houbertz, R.D., G.Cronauer, C.Schmitt, A.Martin, H.Park, J. U.Fröhlich, L.Buestrich, R.Popall, M.Streppel, U.Dannberg, P.Wächter, C.Bräuer, A. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films 442, 194-200 (2003).
83. Ulrich Schubert, N.H., and Anne Lorenz. Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chemistry of materials 7, 2010-2027 (1995).
84. Hiroaki Uchida, Y.K., Koji Yoshino, Akira Kawamata. General Strategy for the Systematic Synthesis of Oligosilanes. Silicone Dendrimers. Journal of the American Chemical Society 112, 7077-7079 (1990).
85. G. Fordon Cameron, M.S.C. Polymerization of poly(dimethylsiloxane) macromers:1. Copolymerization with styrene. Polymer 26, 437-442 (1985).
86. S. Sepeur, N.K., B. Werner, H. Schmidt. UV curable hard coatings on plastics. Thin Solid Films 351, 216-219 (1999).
87. Seugn-Cheol, B.B.-S.Y. Resin Composition for LED Encapsulation. (2010).
88. Hirano. SILICONE RESIN COMPOSITION. (2009).
89. Yang, S.K., Joon-Soo;Jin, JungHo;Kwak, Seung-Yeon;Bae, Byeong-Soo. Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant. Journal of Applied Polymer Science 122, 2478-2485 (2011).
90. Wang, S.H. National central university (2013).
91. Yang, S.K., S. Y.; Jin, J.; Bae, B. S. . Highly Condensed Epoxy-Oligosiloxane-Based Hybrid Material for Transparent Low-k Dielectric Coatings. Acs Applied Materials & Interfaces 1, 1585-1590 (2009).
92. Eo, Y.J.K., J. H.; Ko, J. H.; Bae, B. S. Optical characteristics of photo-curable methacryl-oligosiloxane nano hybrid thick films. Journal of Materials Research 20, 401-408 (2005).
93. Aspnes, D.E. Local‐field effects and effective‐medium theory: A microscopic perspective. American journal of physics 50, 704 (1982). |