博碩士論文 953404001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.138.179.119
姓名 鍾寶堂(Pao-Tang Chung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Synthesis of Zirconia Nanocomposite and Its Applications for Light-Emitting Diode Encapsulation Material)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積★ 沸石晶核的製備與排列
★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備★ 聚芳香羧酸酯之合成及性質研究
★ MFI沸石超微粒子之製作★ 四氯化鈦之控制水解研究
★ 具環氧基矽烷包覆奈米粒子之研究★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要在探討奈米氧化鋯與環氧樹脂及矽膠組成之奈米複合材料之合成方式,以及其於LED封裝材料上之應用。使用之樹脂主體材料主要分兩大部分,首先為選用商用環氧樹脂中黏度較低的脂環族環氧樹脂ERL-4221與表面改質過後之氧化鋯奈米粒子於乙酸乙酯溶劑中進行混合,將溶劑去除後得到氧化鋯/環氧樹脂複合封裝膠材。其次為參考文獻作法,自行合成具有低黏度,高折射率之矽膠原料後,重複第一部分複合材料做法,即可得到氧化鋯/環氧樹脂複合封裝膠材。
經由X光繞射儀(XRD)、粒徑分析儀(DLS)、小角度散射(SAXS)、熱重分析(TGA)、紫外光可見光光譜儀 (UV/Vis Spectrometer)、穿透式電子顯微鏡(TEM)、矽-29液態核磁共振光譜(Si29 NMR)、硬度計、黏度計及折射率儀進行性質分析,研究結果顯示對於自行合成矽膠之低黏度、高折射率、硬度及耐候性之要求均可達到。將奈米氧化鋯粒子與商用環氧樹脂及自製矽膠混合後製作之複合封裝膠,分別可提升折射率從1.5001 到1.5368 及1.5413 到1.5941。
將所製作的複合封裝膠材實際應用於商用LED封裝中並測試其出光功率及高溫(85 oC)高濕(85%相對溼度)點燈耐候試驗後,我們驗證出添加奈米氧化鋯於環氧樹脂或矽膠中確實可以因折射率及散熱性提升而增加出光率。總結本研究結果,我們可得到高性能之氧化鋯/矽膠複合封裝材,其於粒子添加量24vol%時折射率為1.59並於相同輸入電流時比商用高折射率封裝矽膠(OE-6630)表現出大於13%之出光功率。高溫高濕耐候測試結果也顯示此複合氧化鋯/矽膠封裝材與商用封裝矽膠材壽命相近,此氧化鋯/矽膠複合封裝材應極具發展成為LED封裝膠產品之潛力。
摘要(英) This thesis studies two kinds of zirconia composite system for LED encapsulation. The low viscosity cycloaliphatic epoxy/anhydride has been choose to be the matrix resin of zirconia/epoxy system in the former, and matrix resin of zirconia/silicone system was a home-made silicone of low viscosity and high R.I. in the latter. In both systems, the composite was prepared by dispersion of surface modified zirconia in a common solvent with the matrix resin. The composite encapsulant was obtained after removing solvents.
Physical & chemical characteristics of composite has been analyzed by X-ray diffraction(XRD), dynamic Light Scattering(DLS), small-angle X-ray scattering(SAXS), thermal gravimetric analysis(TGA), ultraviolet-visible spectroscopy(UV/Vis Spectrometer), transmission electron microscopy(TEM), silicon -29 liquid nuclear magnetic resonance spectroscopy(Si29 NMR), hardness tester, viscometer and refractometer. The results show that the composite resin, that satisfies the requirements of low viscosity, high refractive index, reasonable flexibility and good thermal/humidity durability, can be achieved. Maximum loading of filler for a workable encapsulant with either epoxy or silicone is 24vol%, and led to an increase of index from 1.5001 to 1.5368 in the former case, and from 1.5413 to 1.5941 in the latter.
To evaluate the performance of encapsulants, we have tested the composite encapsulants directly in working LED package. The light output power and it decay under 85oC/85% humidity operation condition was selected as the most important characteristics for an encapsulant. We can conclude that the incorporation of zirconia filler in either epoxy or silicone resin is beneficial for the application as LED encapsulant. Finally, we have obtained a zirconia/silicone composite with 24vol% filler content showing 13% better light extraction efficiency compared to the commercial high-n silicone encapsulant (OE-6630), with a comparable durability. This zirconia/silicone composite encapsulant should have potential to become a popular encapsulation material for LED packages.
關鍵字(中) ★ 氧化鋯
★ 複合材料
★ LED封裝
★ 折射率
關鍵字(英)
論文目次 Abstract in Chinese i
Abstract ii
Acknowledgment iv
Table of Contents v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Objective of the thesis 5
Chapter 2 Basic Theory and Literature Review 8
2.1 LED basics 8
2.1.1 Electroluminescence theory 8
2.1.2 Internal, external and extraction efficiency 9
2.1.3 LED Package 10
2.2 Optical theory 11
2.2.1 Law of refraction and reflection 11
2.2.2 Fresnel Loss 12
2.2.3 Total internal reflection 12
2.2.4 Absorption and extinction coefficient theory 15
2.2.5 Radiometry and photometry 17
2.3 Encapsulation materials 18
2.3.1 Epoxy 18
2.3.2 Silicone 19
2.3.3 nanocomposite 20
2.3.4 Develop of high refractive index materials 21
2.4 LED Performance and Reliability 24
2.4.1 Luminance-current-voltage measurement system 24
2.4.2 Thermal and humidity stability 25
Chapter 3 Zirconia/Epoxy nanocomposite for LED encapsulation 31
3.1 Preface 31
3.2 Experiments 31
3.2.1 Chemicals 31
3.2.2 Characteristics of zirconia fillers and its surface modification 32
3.2.3 Prepare of the composite encapsulant 33
3.2.4 LED Encapsulation 34
3.2.5 Instruments 35
3.3 Results and discussion 36
3.3.1 Physical & chemical characteristics of the modified zirconia filler 36
3.3.2 Chemical characteristics of composite encapsulant 38
3.3.3 Optical testing as encapsulant in LED packages 41
3.3.4 Heat dissipation analysis 43
3.3.5 Reliability analysis 45
3.4 Summaries 48
Chapter 4 Silicone resin and Zirconia / silicone nanocomposite for LED encapsulation 64
4.1 Preface 64
4.2 Experiments 65
4.2.1 Chemicals 65
4.2.2 Synthesis of methacrylate modified silicone 66
4.2.3 Characteristics of zirconia filler and its surface modification 67
4.2.4 Prepare of the composite encapsulant 67
4.2.5 LED Encapsulation 68
4.2.6 Instruments 69
4.3 Results and discussion 70
4.3.1 Degree of condensation 70
4.3.2 Physical & Chemical characteristics of methacrylate modified silicone 71
4.3.3 Chemical characteristics of modified zirconia filler 73
4.3.4 Physical properties of the composite encapsulant 74
4.3.5 Efficiency and reliability of encapsulated LED packages 77
4.4 Summaries 83
Chapter 5 Conclusion 98
References 100
參考文獻 1. Whitaker, T. Osram Improves Red, Green LED Performance. 16 (2010).
2. Arturas Zukauskas, M.S.S., Remis Gaska. Introduction to solid-state lighting, (Wiley, 2002).
3. DOE. Solid-state lighting research and development: multi-year program plan. (2011).
4. Schubert, E.F. Light-emitting diodes, (Cambridge University Press, 2003).
5. F. W. Mont, K., J. K.Schubert, M. F.Schubert, E. F.Siegel, R. W. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. Journal of Applied Physics 103, 083120-083125 (2008).
6. F.W. Mont, J.K.K., M. F. Schubert, H. Luo, E. F. Schubert, R.W. Siegel. Light-emitting diodes: research, manufacturing, and application XI, . in SPIE Symp. Ser. Vol. 6486 6486C1-6486C8 (2007).
7. Narendran, N.G., Y.Freyssinier, J. P.Yu, H.Deng, L. Solid-state lighting: failure analysis of white LEDs. Journal of Crystal Growth 268, 449-456 (2004).
8. Nadarajah Narendran, Y.G. Life of LED-Based White Light Sources. IEEE/OSA JOURNAL OF DISPLAY TECHNOLOGY 1, 167-171 (2005).
9. Keeping, S. LED Heat Dissipation and Lowering Thermal Resistance of LED Lighting Substrates. (Electronic Products Editorial Consortium, 2008).
10. Chen, C.W.Y., X. S.Chiang, A. S. T. An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals. Journal of the Taiwan Institute of Chemical Engineers 40, 296-301 (2009).
11. J.T.Bai. National central university (2010).
12. M. Baniassadi, F.A., A. Laachachi, S. Ahzi, H. Garmestani, F. Hassouna, A. Makradi, V. Toniazzo, D. Ruch. Using SAXS approach to estimate thermal conductivity of polystyrene/zirconia nanocomposite by exploiting strong contrast technique. Acta materialia 59, 2742-2748 (2011).
13. Lee, W.S.H., I. Y.Yu, JinKim, S. J.Byun, K. Y. Thermal characterization of thermally conductive underfill for a flip-chip package using novel temperature sensing technique. Thermochimica Acta 455, 148-155 (2007).
14. Sun Lee, W.Y., Jin. Comparative study of thermally conductive fillers in underfill for the electronic components. Diamond and Related Materials 14, 1647-1653 (2005).
15. Van Driel, W.D.F., X.J. Solid State Lighting Reliability: Components to Systems, (Springer, 2013).
16. Krames MR, S.O., Mueller-Mach R, Mueller GO, Z hou L, Harbers G, Craford MG. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology 3, 160-175 (2007).
17. Smith, W. Modern Optical engineering, (MGraw-Hill, 2008).
18. CIE041-1978. Light as a true visual quantity:Principles of measurement. (CIE Commission Internationale de L’Eclairage, 1978).
19. Klaus Mullen, U.S. Organic Light Emitting Devices: Synthesis, Properties and Applications, (Wiley, 2006).
20. J.C. Huang, Y.P.C., M. Wei, R.D. Deanin. Comparison of epoxy resins for applications in light-emitting diodes. Advances in Polymer Technology 23, 298-306 (2004).
21. S. S. LEE, S.C.K. Physical Aging of Polydimethylsiloxane-Modified Epoxy Resin. Journal of Applied Polymer Science 69, 1291-1300 (1998).
22. Kimihiro Matsukawa, K.H., Hiroshi Inoue, Akinori Fukuda and Yasushi Arita. Preparation and Curing Behavior of Siloxane-Containing Epoxy Resins. Journal of Polymer Science: Part A Polymer Chemistry 30, 2045-2048 (1992).
23. Barton D.L., O.M., Perlin P., Helms C. J., Bern N.H. Life tests and failure mechanisms of GaN/AlGaN/InGaN light-emmiting diodes. SPIE 17, 3279 (1998).
24. Stephen J. Clarson, M.J.O., Steven D. Smith, Mark E. Van Dyke. Advances in Silicones and Siloccone-Modified Materials, (American Chemical Society, 2010).
25. Pulickel M. Ajayan, L.S.S., Paul V. Braun. Nanocomposite Science and Technology, (WILEY-VCH, 2004).
26. M.Sumita, Y.T., K. Miyasaka, K. Ishikawa. Tensile yield stress of polypropylene composites filled with ultrafine particles. Journal of Materials Science 18, 1758 (1983).
27. Min Zhi Ronga, M.Q.Z., Yong Xiang Zhenga, Han Min Zenga, K. Friedrich. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42, 3301-3304 (2001).
28. J.I. Honga, K.S.C., C. I. Chunga, L. S. Schadlera and R. W. Siegela. Retarded Cross-linking in ZnO-low-density Polyethylene Nanocomposites. Journal of Materials Research 17, 940-943 (2002).
29. Gianfranco Carotenuto, Y.-S.H., and Egon Matijević. Preparation and Characterization of Nanocomposite Thin Films for Optical Devices. Industrial & Engineering Chemistry Research 35, 2929-2932 (1996).
30. Lorenz Zimmennanna, M.W., Walter Caseria and Ulrich W. Sutera. High refractive index films of polymer nanocomposites. Journal of Materials Research 8, 1742-1748 (1993).
31. Tasoula Kyprianidou-Leodidou, W.C., Ulrich W. Suter. Size Variation of PbS Particles in High-Refractive-Index Nanocomposites. The Journal of Physical Chemistry B 98, 8992-8997 (1994).
32. Tasoula Kyprianidou-Leodidou, H.-J.A., Yves Wyser, Daniel Vetter, Michele Büchler, Walter Caseri and Ulrich W. Suter. High Refractive Index Materials of Iron Sulfides and Poly(ethylene oxide). Journal of Materials Research 12, 2198-2206 (1997).
33. Y. Zhou, N.T., C. L. Yuan, Y. He, F. G. Shi. One-Component, Low-Temperature, and Fast Cure Epoxy Encapsulant With High Refractive Index for LED Applications. IEEE Transactions on Advanced Packaging 31, 484-489 (2008).
34. H. T. Li, C.-W.H. Enhancement of light efficiency of LED using a novel hight refractive encapsulant. in Electronic Components and Technology Conference 1926-1930 (2008).
35. Z. C. Cui, C.L.L., B. Yang, J.C. Shen, X. P. Su, H. Yang. The research on syntheses and properties of nevel epoxy/polymercaptan curing optical resins with high refractive indices. Polymer 42, 10095-10100 (2001).
36. W.F. Su, Y.C.F., W.P. Pan. Thermal properties of high refractive index epoxy resin system. Thermochimica Acta 392, 385-389 (2002).
37. C.L. Lu, Z.C.C., Y.X. Wang, B. Yang, J.C. Shen. Studies on syntheses and properties of episulfide-type optical resins with high refractive index. Journal of Applied Polymer Science 89, 2426-2430 (2003).
38. Todosiichuk, T.T.Y., N. V.; Menzheres, G. Y.; Kosyanchuk, L. F. . Peculiarities of formation of optically transparent photocurable compound adhesive with high refractive index. Polym. Sci. Ser. D 3, 99-103 (2010).
39. Yano, S.I., T.Shinoda, K.Ikake, H.Hagiwara, T.Sawaguchi, T.Kurita, K.Seno, M. Properties and microstructures of epoxy resin/TiO2 and SiO2 hybrids. Polymer International 54, 354-361 (2005).
40. C .Guan, C.L.L., Liu, Y. F.Yang, B. Preparation and characterization of high refractive index thin films of TiO2/epoxy resin nanocomposites. Journal of Applied Polymer Science 102, 1631-1636 (2006).
41. Ochi, M.N., D.Harada, M. Effect of acetic acid content on in situ preparation of epoxy/zirconia hybrid materials. Journal of Materials Science 45, 6159-6165 (2010).
42. Ochi, M.N., D.Suzuki, Y.Harada, M. Thermal and optical properties of epoxy/zirconia hybrid materials synthesized via in situ polymerization. Journal of Materials Science 45, 2655-2661 (2010).
43. Chau, J.L.H.L., H. W.Su, W. F. Fabrication of hybrid surface-modified titania-epoxy nanocomposite films. Journal of Physics and Chemistry of Solids 70, 1385-1389 (2009).
44. Elim, H.I.C., B.Kurata, Y.Sugihara, O.Kaino, T.Adschiri, T.Chu, A. L.Kambe, N. Refractive Index Control and Rayleigh Scattering Properties of Transparent TiO2 Nanohybrid Polymer. Journal of Physical Chemistry B 113, 10143-10148 (2009).
45. Kurata, Y.S., O.Kaino, T.Komatsu, K.Kambe, N. Thermo-optic controllable hybrid photonic polymers containing inorganic nanoparticles. Journal of the Optical Society of America B-Optical Physics 26, 2377-2381 (2009).
46. M. Sangermano, G.M., E. Amerio, R. Bongiovanni, A. Priola, A. Di Gianni, B. Vot, G. Rizza. Preparation and Characterization of Nanostructured TiO2/Epoxy Polymeric Films. Macromolecular Materials and Engineering 291, 517-523 (2006).
47. Li Y, T.P., Viswanath A, Benicewicz BC, Schadler LS. Bimodal Surface Ligand Engineering: The Key to Tunable Nanocomposites. Langmuir 29, 1211-1220 (2012).
48. Tao P, L.Y., Rungta A, Viswanath A, Gao J, Benicewicz BC, et al. TiO2 nanocomposites with high refractive index and transparency. . J Mater Chem 21(2011).
49. Tao P, V.A., Li Y, Siegel RW, Benicewicz BC, Schadler LS. Bulk Bulk transparent epoxy nanocomposites filled with poly(glycidyl methacrylate) brush-grafted TiO2 nanoparticles. Polymer 54, 1639-1646 (2013).
50. Li Y, T.P., Siegel RW, Schadler L. Multifunctional Silicone Nanocomposites for Advanced LED Encapsulation. Mater. Res. Soc. Symp. Proc. 1547, 901 (2013).
51. Noll, W. Chemistry and Technology of Silicone, (Academic Press, 1968).
52. Buestrich, R.K., F.; Popall, M.; Dannberg, P.; Muller-Fiedler, R.; Rosch, O. ORMOCER°R s for Optical Interconnection Technology. Journal of Sol-Gel Science and Technology 20, 181-186 (2001).
53. Schmidt, H. New type of non-crystalline solids between inorganic and organic materials. journal of Non-crystalline solids 73, 681-691 (1985).
54. IES. Electrical and photometric measurements of solid-state lighting products. Vol. LM-79-08 (illuminating engineering society, 2008).
55. IES. Measuring Lumen Maintenance of LED Light Sources. Vol. LM-80-08 (illuminating engineering society, 2008).
56. JESD22-A101-C. Steady State TEmperature Humidity Bias Life Test. (2009).
57. S.H. Wang, Y.S.S., A.S.-T. Chiang, H. F. Hung, M.C. Chen, K. Wood. Carboxylic Acid-Directed Clustering and Dispersion of ZrO2 Nanoparticles in Organic Solvents: A Study by Small-Angle X-ray/Neutron Scattering and NMR. The Journal of Physcal Chemistry C 115, 11941-11950 (2011).
58. R.P. Denkewicz, K.S.T., J.H. Adair. Hydrothermal Crystallization Kinetics of m- ZrQ2 and t- ZA. Journal of Materials Research 5, 2698-2705 (1990).
59. Chuah, G.K. An investigation into the preparation of high surface area zirconia. Catalysis Today 49, 131-139 (1999).
60. A. Benedetti, G.F., F. Pinna, S. Polizzi. Structural properties of ultra-fine zirconia powders obtained by precipitation methods. Journal of Materials Science 25, 1473-1478 (1990).
61. A. Benedetti, G.F., F. Pinna, S. Polizzi. Preparation and Structural Characterization of Ultrafine Zirconia Powders. Journal of the American Ceramic Society 72, 467-469 (1989).
62. Clearfield, A. Crystalline Hydrous Zirconia. Inorganic Chemistry 3, 146-148 (1964).
63. Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl solutions. Journal of Materials Research 5, 161-162 (1990).
64. R. Srinivasan, S.F.S., J.M. Harris, B.H. Davis. Discrepancies in the crystal structures assigned to precipitated zirconia. Journal of Materials Science Letters 10, 352-354 (1991).
65. G. Stefanic, S.P., S. Music. Influence of pH on the hydrothermal crystallization kinetics and crystal structure of ZrO2. Thermochimica Acta 303, 31-39 (1997).
66. WHITNEY, E.D. Observations on the Nature of Hydrous Zirconia. Journal of the American Ceramic Society 53, 697-698 (1970).
67. Miller, J.D. & Ishida, H. Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes. Surface Science 148, 601-622 (1984).
68. Posthumus, W.M., P. C. M. M.Brokken-Zijp, J. C. M.Tinnemans, A. H. A.van der Linde, R. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Journal of Colloid and Interface Science 269, 109-116 (2004).
69. D.W. Schaefer, J.E.M., P. Wiltzius, D.S. Cannell. Fractal Geometry of Colloidal Aggregates. Physical Review Letters 52, 2371-2374 (1984).
70. Chau, J.L.H.L., Y. M.Li, A. K.Su, W. F.Chang, K. S.Hsu, S. L. C.Li, T. L. Transparent high refractive index nanocomposite thin films. Materials Letters 61, 2908-2910 (2007).
71. Lin, Y.-C.Y., Jiun Pyng;Tran, Nguyen T.;He, Yongzhi;Shi, Frank G. Packaging of Phosphor Based High Power White LEDs: Effects of Phosphor Concentration and Packaging Configuration. Journal of Electronic Packaging 133, 011009 (2011).
72. A. Garahan, L.P., J. Yin, I. Saxena. Effective optical properties of absorbing nanoporous and nanocomposite thin films. Journal of Applied Physics 101, 014320-014329 (2007).
73. Yang, C.T., Liu, W.C. & Liu, C.Y. Measurement of thermal resistance of first-level Cu substrate used in high-power multi-chips LED package. Microelectronics Reliability 52, 855-860 (2012).
74. Y. Xi, E.F.S. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode foreard voltage method. Applied Physics Letters 85, 2163-2165 (2004).
75. S. Gupta, P.C.R., G. Madras. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polymer Chemistry 2, 221-228 (2011).
76. Yeong-Her Lin, J.P.Y., Yuan-Chang Lin, Nguyen T. Tran, and Frank G. Shi. Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES 33, 761-766 (2010).
77. Steven Abbott, N.H. Nanocoatings:principles and practice, (DEStech Publications, Inc., 2013).
78. Bae, J.-S.K.S.Y.B.-S. Thermal stability of sol–gel derived methacrylate oligosiloxane-based hybrids for LED encapsulants. J Sol-Gel Sci Technol 53, 434-440 (2010).
79. Kim, W.S.Y., K. B.; Bae, B. S. Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique. Journal of Materials Chemistry 15, 4535-4539 (2005).
80. Eo, Y.J.L., T. H.; Kim, S. Y.; Kang, J. K.; Han, Y. S.; Bae, B. S. Synthesis and molecular structure analysis of nano-sized methacryl-grafted polysiloxane resin for fabrication of nano hybrid materials. Journal of Polymer Science Part B-Polymer Physics 43, 827-836 (2005).
81. Moujoud, A.K., W. S.; Bae, B. S.; Shin, S. Y. . Thermally stable optical characteristics of sol-gel hybrid material films. . Applied Physics Letters 88, 101916 (2006).
82. Houbertz, R.D., G.Cronauer, C.Schmitt, A.Martin, H.Park, J. U.Fröhlich, L.Buestrich, R.Popall, M.Streppel, U.Dannberg, P.Wächter, C.Bräuer, A. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films 442, 194-200 (2003).
83. Ulrich Schubert, N.H., and Anne Lorenz. Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chemistry of materials 7, 2010-2027 (1995).
84. Hiroaki Uchida, Y.K., Koji Yoshino, Akira Kawamata. General Strategy for the Systematic Synthesis of Oligosilanes. Silicone Dendrimers. Journal of the American Chemical Society 112, 7077-7079 (1990).
85. G. Fordon Cameron, M.S.C. Polymerization of poly(dimethylsiloxane) macromers:1. Copolymerization with styrene. Polymer 26, 437-442 (1985).
86. S. Sepeur, N.K., B. Werner, H. Schmidt. UV curable hard coatings on plastics. Thin Solid Films 351, 216-219 (1999).
87. Seugn-Cheol, B.B.-S.Y. Resin Composition for LED Encapsulation. (2010).
88. Hirano. SILICONE RESIN COMPOSITION. (2009).
89. Yang, S.K., Joon-Soo;Jin, JungHo;Kwak, Seung-Yeon;Bae, Byeong-Soo. Cycloaliphatic epoxy oligosiloxane-derived hybrid materials for a high-refractive index LED encapsulant. Journal of Applied Polymer Science 122, 2478-2485 (2011).
90. Wang, S.H. National central university (2013).
91. Yang, S.K., S. Y.; Jin, J.; Bae, B. S. . Highly Condensed Epoxy-Oligosiloxane-Based Hybrid Material for Transparent Low-k Dielectric Coatings. Acs Applied Materials & Interfaces 1, 1585-1590 (2009).
92. Eo, Y.J.K., J. H.; Ko, J. H.; Bae, B. S. Optical characteristics of photo-curable methacryl-oligosiloxane nano hybrid thick films. Journal of Materials Research 20, 401-408 (2005).
93. Aspnes, D.E. Local‐field effects and effective‐medium theory: A microscopic perspective. American journal of physics 50, 704 (1982).
指導教授 蔣孝澈 審核日期 2013-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明