博碩士論文 100324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.128.198.107
姓名 謝宥晟(Yu-Cheng Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Particle Size Effect of the Alq3 Target Source on OLED Efficiency)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討製程上蒸鍍源的顆粒大小與OLED光電的特性。超音波震盪過後的Alq3粉末粒徑小於市售的Alq3粉末,超音波震盪後的Alq3粉末堆疊緻密,熱傳導效果比較好,由超音波震盪後Alq3所構成的蒸鍍源其溫度相對於市售的Alq3所構成的蒸鍍源較高以及較恆溫。促進較高溫度梯度的蒸鍍製程,提升擴散通量,使氣體Alq3在基板上形成動力驅動的沉積模式,沉積出較小的微晶薄膜,提升元件的電子傳輸性。因為在此系統的固定膜厚下,較小的微晶薄膜阻擋電子能力下降,降低載子的結合率,其元件的電流效率較低。在10000 cd/m2亮度下為例,以超音波震盪後Alq3所構成的蒸鍍源製備出的單元件,其電流密度為0.23 A/cm2,而電流效率為4.55 cd/A,而以市售的Alq3蒸鍍源製備出的單元件,其電流密度為0.09 A/cm2,而電流效率為5.57 cd/A。掌握蒸鍍源粉末的大小分布與粉末間隙,即控制蒸鍍源粉末的熱傳導性,將更準確地控制在薄膜上元件的再現性,以及提升元件電子傳輸性。
摘要(英) The relationship between the particle size of the target source and the photoelectric characteristic of organic light-emitting diode (OLED) was investigated in this thesis. The insonated Alq3 particulates were smaller than the as-received Alq3 particulates. The insonated Alq3 particulates were compacted with a better connectivity which related to heat conduction. With better heat conduction, the Alq3 vapor was deposited on a substrate with a kinetically driven growth mechanism. Smaller crystallites were resulted in the thin film which gave a highly electronic transportation, leading to an increased current density. Because of the given thickness and the drop of the electronic blocking ability, the recombination probability of carriers by the smaller crystallite size in the thin film could not be enhanced. The insonated Alq3 produced device exhibited, at 10000 cd/m2, for example, the current density of 0.23 A/cm2 and the current efficiency of 4.55 cd/A, whereas the as-received Alq3 produced device displayed 0.09 A/cm2 and 5.57 cd/A, respectively. This suggested that the target source with compacted connection accompanied the improvement of the electronic transmission and the reproducibility of OLEDs for thermal evaporation process.
關鍵字(中) ★ 有機發光二極體
★ Alq3
★ 蒸鍍源
關鍵字(英)
論文目次 摘要 i
Abstract ii
Acknowledgement iii
List of Figures vii
List of Tables ix
Chapter 1 Executive Summary 1
1.1 Introduction 1
1.2 Brief Introduction of Alq3 4
1.3 Conceptual Framework 5
1.4 References 7
Chapter 2 Analytical Instruments 10
2.1 Introduction 10
2.2 Microscopic Methods 12
2.2.1 Field Emission Scanning Electron Microscopy (FE-SEM) 12
2.3 Spectroscopy Methods 15
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy 15
2.4 Crystallographic Analysis Methods 17
2.4.1 Powder X-ray Diffraction (PXRD) 17
2.4.2 Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 22
2.5 Color and Luminescence Meter and Source Measure Unit Instrument 24
2.6 References 27
Chapter 3 Particle Size Effect of the Alq3 Target source on OLED Efficiency 29
3.1 Introduction 29
3.2 Materials 33
3.2.1 Chemicals 33
3.2.2 N,N’-bis(1-naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine (NPB) 36
3.2.3 Lithium Fluoride (LiF) 36
3.2.4 ITO Substrate 37
3.3 Experimental Procedures 38
3.3.1 Sonication for Alq3 38
3.3.2 Device Fabrication 39
3.4 Instrumental Analysis 41
3.4.1 Fourier Transform Infrared Spectroscopy (FT-IR) 41
3.4.2 Powder X-ray Diffractometry (PXRD) 41
3.4.3 Field Emission Scanning Electron Microscopy (FESEM) 41
3.4.4 Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 42
3.4.5 Source Measure Unit Instrument and Color and Luminescence Meter 42
3.5 Results and Discussion 43
3.6 Conclusions 52
3.7 References 53
Chapter 4 Conclusions and Future Works 59
Appendix 61
參考文獻 Chapter 1
1. Compton, D.; Schneider, W.; Waddington, T. Photoconductivity of Anthracene. III J. Chem. Phys. 1957, 27(1), 160-172.
2. Garrett, C. Semiconductor, Reinhold Pub. Co.: New York, 1959; pp. 634-675.
3. Kallmann, H.; Pope, M. Bulk Conductivity in Organic Crystals. Nature 1960, 186(4718), 31-33.
4. Pope, M.; Kallmann, H. P.; Magnante, P. Electroluminescence in Organic Crystals. J. Chem. Phys. 1963, 38(8), 2042-2043.
5. Tang C. W.; Van S. A. Organic Electroluminescent Diodes. Appl. Phya. Lett. 1987, 51(12), 913-915.
6. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund M.; Salaneck, W. R. Electroluminescent Conjugated Polymers. Nature. 1999, 397(6715), 121-128.
7. Forrest, S. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature. 2004, 428(6986), 911-918.
8. Sirringhaus, H. Materials and Applications for Solution-Processed Organic Field-Effect Transistors. IEEE. 2009, 97(9), 1570-1579.
9. Karl, N. Charge Carrier Transport in Organic Semiconductors. Synth. Met. 2003, 133-134, 649-657.
10. Lee, S. S.; Loo, Y. L. Structural Complexities in the Active Layers of Organic Electronics. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 59–78.
11. Jonda, C.; Mayer, A. B. R.; Stolz, U.; Elschner, A.; Karbach, A. Surface Roughness Effects and Their influence on The Degradation of Organic Light Emitting Devices. J. Mater. Sci. 2000, 35(22), 5645-5651.
12. Hing, L. S.; Chen, C. H. Recent Progress of Molecular Organic Electroluminescent Materials and Devices. Mater. Sci. Eng., 2002, R 39(5-6), 143-222.
13. Brinkmann, M.; Gadret, Gr.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. Correlation Between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 2000, 122(21), 5147-5157.
14. Rajeswaran, M.; Blanton, T. N.; Klubek, K. P. Refinement of the Crystal Structure of the δ-modification of Tris(8-hydroxy-quinoline)aluminum(III), δ-Al(C9H6NO)3, the Blue Luminescent Alq3. Zeitschrift fur Kristallograhie - New Crystral Stuctures 2003, 218(4), 439-440.
15. Rajeswaran, M.; Blanton, T. N. Single-Crystal Structure Determination of a New Polymorph(ε-Alq3) of the Electroluminescence OLED Material, Tris(8-hydroxyquinoline) Aluminum(Alq3). J. Chem. Crystallogr. 2005, 35(1), 71-76.
16. Li, H.; Zhang, F.; Wang, Y.; Zheng, D. Synthesis and Characterization of tris-(8-hydroxyquinoline)aluminum. Mater. Sci. Eng. 2003, B100(1), 40-46.
17. Higginson, K. A.; Thomsen III, D. L.; Yang, B.; Papadimitrakopoulos, F. Organic Light-Emitting Devices, Shinar, Springer: New York, 2003; pp. 96-98.
18. Shinar, J.; Savvateev, V. Introduction to Organic Light-Emitting Devices, Shinar, Springer: New York, 2003; pp. 15-17.
Chapter 2
1. Tiwary, A. K. Modification of Crystal Habit and Its Role in Dosage Form Performance. Drug Dev. Ind. Pharm. 2001, 27(7) 699-709.
2. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy, 3rd Ed.; Brooks/COLE Thomson Learning: Mississippi, 2001; pp. 13-24.
3. Cölle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.; Brütting, W. Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (AlQ3). Adv. Funct. Mater. 2003, 13(2), 108-112.
4. Reed-hill, R. E. Physical Metallurgy Principles, 3rd Ed.; PWS Publi. Co.: Boston, 1994; pp. 53-60.
5. Macur, J. E.; Marti, J.; Lui, S. C. Materials Characterization and Chemical Analysis, 2nd Ed.; J. P. Sibilia, Wiley-Vch: New York, 1996; pp. 167-177.
6. Rouessac, F.; Rouessac, A. Chemical Analysis-Modern Instrumentation Methods and Techniques, 1st Ed.; John Willy & Sons, Chichester: England, 2001; pp. 170-173.
7. Skoog, D. A.; Holler, F. J.; Nieman, T. A. Components of Optical Instrument, 5th Ed.; Thomson Learning: Mississippi, 2001; pp. 182-183.
8. Bauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms. Int. J. Pharm., 1996, 140(2), 195-206.
9. Cullity, B.D.; Stock. S.R. Elements of X-Ray Diffraction, 3rd Ed.; Upper Saddle River, Prentice Hall: New Jersey, 2001; pp. 100-102.
10. Chiu, M.-Y.; Jeng, U.-S.; Su, C.-H.; Liang, K. S.; Wei, K.-H. “Simultaneous Use of Small- and Wide-Angle X-ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells.” Adv. Mater. 2008, 20(13), 2573-2578.
11. Greaf, K.; Schaeffel, F. Control of Accommodation by Longitudinal Chromatic Aberration and Blue Cones. J. Vision. 2012, 12(1), 1–12.
12. Spitz, S. Oil well Temperature Indicator and Control. US Patent 3026940, 1962.
13. Niemeyer, J.; Grimm, L.; Meier, W.; Hinken, J. H.; Vollmer, E. Stable Josephson Reference Voltages Between 0.1 and 1.3 V for High‐Precision Voltage Standards. Appl. Phys. Lett. 1985, 47(11), 1222-1223.
Chapter 3
1. Forrest S. R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. Chem. Rev. 1997, 97(3), 1793-1896.
2. Mäkinen A. J.; Melnyk A. R.; Schoemann S.; Headrick R. L.; Gao Y. Effect of Crystalline Domain Size on the Photophysical Properties of Thin Organic Molecular Films. Phys. Rev. B 1999, 60(21), 14683-14687.
3. Tang C. W.; Van S. A. Organic Electroluminescent Diodes. Appl. Phya. Lett. 1987, 51(12), 913-915.
4. Cölle M.; Gmeiner J.; Milius W.; Hillebrecht H.; Brütting W.; Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mater. 2003, 13(2), 108-112.
5. McElvain, J.; Antoniadis, H.; Hueschen, M. R.; Miller, J. N.; Roitman, D. M.; Sheats J. R.; Moon, R. L. Formation and Growth of Black Spots in Organic Light‐Emitting Diodes. J. Appl. Phys. 1996, 80(10), 6002-6007.
6. Burrows, P. E.; Shen, Z.; Bulovic, V.; McCarty, D. M.; Forrest, S. R.; Cronin, J. A.; Thompson, M. E. Relationship Between Electroluminescence and Current Transport in Organic Heterojunction Light‐Emitting Devices. J. Appl. Phys. 1996, 79(10), 7991-8006.
7. Do, L. M.; Han, E. M.; Yamamoto, N.; Fujihira M. Crystallization of Organic Thin Films for Electroluminescent Devices. Thin Solid Films 1996, 273(1-2), 202-208.
8. Do, L. M.; Han, E. M.; Yamamoto, N.; Fujihira M.; Kanno, T.; Yoshida, S.; Maeda, A.; Ikushima, A. J. Observation of Degradation Processes of Al Electrodes in Organic Electroluminescence Devices by Electroluminescence Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy, and Auger Electron Spectroscopy. J. Appl. Phys. 1994, 76(9), 5118-5121.
9. Tang, C. W.; van Slyke, S. A.; Chen, C. H. Electroluminescence of Doped Organic Thin Films. J. Appl. Phys. 1989, 65(9), 3610-3616.
10. Adachi, C.; Tsutsui, T.; Saito, S. Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer. Appl. Phys. Lett. 1989, 55(15), 1489-1491.
11. Stevens, B. Evidence for the Photo-Association of Aromatic Hydrocarbons in Fluid Media. Nature 1961, 192(4804), 725-727.
12. Stevens, B. Some Effects of Molecular Orientation on Fluorescence Emission and Energy Transfer in Crystalline Aromatic Hydrocarbons. Spectrochim. Acta 1962, 18(4), 439-448.
13. Lewis, F. D.; Yang, J. S.; Stern, C. L. Ground and Excited State Aromatic-Aromatic Interactions with Distance Control by Hydrogen Bonding. J. Am. Chem. Soc. 1996, 118(11), 2772-2773.
14. Lewis, F. D.; Yang, J. S. Solid-State Fluorescence of Aromatic Dicarboxamides. Dependence upon Crystal Packing. J. Phys. Chem. B 1997, 101(10), 1775-1781.
15. Pope, M. Electronic processes in organic crystals; Oxford University Press: Oxford, 1982; p 26.
16. de Vries Reilingh, D. N.; Rettschnick, R. P. H. Dimerization of 9,10‐Diazaphenanthrene. J. Chem. Phys. 1971, 54(6), 2722-2727.
17. Kirstein, S.; Möhwald, H. Exciton Band Structures in 2D Aggregates of Cyanine Dyes. Adv. Mater. 1995, 7(5), 460-463.
18. Lee, S. S.; Loo, Y. L. Structural Complexities in the Active Layers of Organic Electronics. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 59–78.
19. O’Brien, D.; Bleyer, A.; Bradlely, D. D. C.; Tsutsui, T. Efficient Multilayer Electroluminescence Devices with Poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) as the Emissive Layer. J. Appl. Phys. 1997, 82(5), 2662-2670
20. Jian, Z. A.; Luo, Y. Z.; Chung, J. M. et al. Effects of Isomeric Transformation on Characteristics of Alq3 Amorphous Layers Prepared by Vacuum Deposition at Various Substrate Temperatures. J. Appl. Phys. 2007, 101(12), 123708-1-123708-6.
21. Blom, P. W. M.; de Jong, M. J. M.; Liedenbaum, C. T. H. F.; Vleggaar, J. J. M. Device Characteristics of Polymer Light-Emitting Diodes. Synth. Met. 1997, 85(1-3), 1287-1288
22. Hrudey, P. C. P.; Szeto, B.; Brett, M. J. Strong Circular Bragg Phenomena in Self-Ordered Porous Helical Nanorod Arrays of Alq3. Appl. Phys. Lett. 2006, 88(25), 1106-1108.
23. Hrudey, P. C. P.; Westra, K. L.; Brett, M. J. Highly Ordered Organic Alq3 Chiral Luminescent Thin Films Fabricated by Glancing-Angle Deposition. Adv. Mater. 2006, 18(2), 224-228.
24. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. High Mobility Hole Transport Fluorene-Triarylamine Copolymers. Adv. Mater. 1999, 11(3), 241-246.
25. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K. D.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Light-Emitting Diodes Based on Conjugated Polymers. Nature, 1990, 347(6293), 539-541.
26. Choulis, S. A.; Nelson, J.; Kim, Y.; Poplavskyy, D.; Kreouzis, T.; Durrant, J. R.; Bradley, D. D. C. Investigation of Transport Properties in Polymer/Fullerene Blends Using Time-of-Flight Photocurrent Measurements. Appl. Phys. Lett. 2003, 83(18), 3812-3814.
27. Giddings, J. C.; LaChapelle, E. The Formation Rate of Depth-Hoar. J. Geophys. Res. 1962, 67(6), 2377-2383.
28. Brinkmann, M.; Gadret, G.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 2000, 122(21), 5147-5157.
29. Muccini, M.; Loi , M. A.; Kenevey, K.; Zamboni, R.; Masciocchi, N.; Sironi, A. Blue Luminescence of Facial Tris(quinolin-8-olato)aluminum(III) in Solution, Crystals, and Thin Films. Adv. Mater. 2004, 16(11), 861-864.
30. Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy. 3rd Ed.; Academic Press Inc. 1990, pp. 282, 347, and 349.
31. Patil, M. N.; Gore, G. M.; Pandit, A. B. Ultrasonically Controlled Particle Size Distribution of Explosive: A Safe Method. Ultrason. Sonochem., 2008, 15(3), 177-187.
32. Lee, T.; Chang, S. C. Sublimation Point Depression of Small-Molecule Semiconductors by Sonocrystallization. Cryst. Growth Des. 2009, 9(6), 2674-2684.
33. Shtein, M.; Mapel, J.; Benziger, J. B.; Forrest, S. R. Effects of Film Morphology and Gate Dielectric Surface Preparation on the Electrical Characteristics of Organic-Vapor-Phase-Deposited Pentacene Thin-Film Transistors. Appl. Phys. Lett. 2002, 81(2), 268-270.
34. Fenter, P.; Eisenberger, P.; Burrows, P.; Forrest, S. R.; Liang, K. S. Epitaxy at the Organic-Inorganic Interface. Physica B 1996, 221(1-4), 145-151.
35. Yang, F.; Stein, M.; Forrest S. R. Morphology Control and Material Mixing by High-Temperature Organic Vapor-Phase Deposition and Its Application to Thin-Film Solar Cells. J. Appl. Phys. 2005, 98 (1), 014906-014915.
36. Gong, J. R.; Wan, L. J.; Lei, S. B.; Bai, C. L; Zhang, X. H.; Lee, S. T.; Direct Evidence of Molecular Aggregation and Fegradation Mechanism of Organic Light-Emitting Diodes Under Joule Heating: an STM and Photoluminescence Study. J. Phys. Chem. B. 2005, 109(5),1675–1682.
37. Patterson, A. L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56(10), 978–982.
38. Uddin, A.; Lee, C. B.; Hu, X.; Wong, T. K. S. Interface-Injection Limited Carrier Transport Properties of Alq3. Appl. Phys. A. 2004, 78(3), 401-405.
指導教授 李度 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明