博碩士論文 973404005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.216.208.243
姓名 郭育丞(Yu-Cheng Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 快速合成均一粒徑功能性次微米球及其應用
(Rapid Synthesis and Applications of Functional Submicronspheres)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光子晶體,大多以PS (Polystyrene)、SiO2 (Silicon dioxide)等硬質球建造,展現了極差的成膜性、以及機械性質,大幅限制了可應用的範圍。因此,本實驗以克服上述缺點為主軸,在第一部分以硬核軟殼結構次微米球,建構光子晶體,以提升其成膜性。此外,進一步藉由混合兩種不同粒徑之高分子球的方式,製備一系列具有不同機械性質、由硬且脆到軟且韌特性的光子晶體薄膜。為了製備各種需求之高分子球,本論文亦發表了一種新穎、快速的合成方法,可在同一製程下,製備具各種不同粒徑、結構、特性之均一粒徑有機、或有機/無機高分子球。
首先,提出快速製備有機/有機核殼結構次微米球的方法。藉由PS球聚合的過程中,添加二階段單體BMA (Butyl methacrylate)的方式,可於2 小時內快速製備PS/PBMA核殼結構次微米球。進一步將其進行光子晶體的自組裝,並藉由鉛筆硬度計測試機械性質。實驗結果指出,藉由組裝硬核軟殼次微米球的方式,可將光子晶體之機械性質,由原本的低於6B,提升至HB。
然而,藉由硬核軟殼結構次微米球組裝之光子晶體,屬硬質膜。因此,製備一系列玻璃轉移溫度(Tg)介於-34 ℃至112 ℃之次微米球。並將其與PS奈米小球混合(≒20 nm),藉此建構一系列具有不同機械性質之光子晶體。SEM結果指出,次微米球以六方最密堆積的方式排列,PS奈米小球則位於球與球的間隙中,防止次微米球於光子晶體建構過程中坍塌。由應力、應變圖的結果顯示,光子晶體之機械性質,可由兩種可行的方式控制,使之由典型的彈性體慢慢變化為脆性高分子。其一為提升次微米球的Tg從-34 ℃至8 ℃;而第二種方法則是在Tg為-34℃之光子晶體內,增加PS奈米小球之混合比例從5 wt. %至25 wt. %。基於以上兩種方法,光子晶體之極限抗拉強度與最大形變量,可以分別達到4.7 Mpa與1236 %。
當光子晶體展現出彈性體行為時,特別具有應用價值,因其光學特性與光子晶體的應變有相對關係,即具有機械應答的能力。因此,在一系列具有不同機械性質之光子晶體中,選擇PBA次微米球,進行更深入的探討。實驗結果指出,隨著PBA次微米球粒徑的增加、或是PS奈米小球於光子晶體中混合量的提升,皆會造成光子晶體之光子能隙有紅移的現象。而當光子晶體受到應力拉伸時,光子能隙表現出了藍移的現象,且λmax的行為符合Poisson 效應。
有別於之前所建立的快速合成有機高分子球的技術,進一步的,藉由選擇二階段單體為矽烷混合物,將此技術延伸至可製備有機/無機PS/SiO2核殼結構次微米球。矽烷混合物之極性,以及其建立之SiO2的機械強度,可藉由改變MTES (Triethoxymethylsilane)與TEOS(Tetraethyl orthosilicate)間之混合比例而調整。且僅藉由簡單的擴散作用力,就可擴散進入PS球之外圍,反應成為SiO2。最後,將PS/SiO2次微米球,進行高溫鍛燒,可得中空SiO2球。
摘要(英) In general, the tranditional colloid opals were constructed mostly by hard spheres, such as PS (Polystyrene), SiO2 (Silicon dioxide) and so on. These opals exhibited awful mechemical and film properties, thus limited the application fields. For these reasons, the main purpose of this thesis was based on the conceptions to overcome above-mentioned disadvantages. At first, the promoted film properties of opal were carried out by constructing from hard core-soft shell structure spheres instead of typic hard spheres. Secondly, the opals with a series of mechanical properties between rigid-brittle and soft-tough polymer behaviors were further prepared by blending two different diameter spheres. In order to synthesize various, required spheres, a rapid, novel synthesis technique was also presented herein. Base on this technique, the monodispersed organic or organic/inorganic spheres with various diameters, structure and properties were able to synthesize in the same procedure.
In the first chapter, the technique for rapid synthesis (2 h) of organic/organic core-shell structure spheres was presented. Monodispersed PS core was polymerized for a period of time, and then BMA (Butyl methacrylate) monomer was introduced to the reaction system to prepare the core-shell PS/PBMA spheres. Subsequently, these core-shell spheres were self-assembled into opal, and examed by pencil hardness test. The results indicated that the mechanical properties of opals were able to promote from original lower than 6B to HB as the core-shell shperes were applied.
However, the category of above opal is hard film. Therefore, a series of submicrospheres with different Tg between -34 ℃ and 112 ℃ were prepared, and further blended with nano PS apheres (≒20 nm) to construct opals. The SEM results indicated that the soft submicrospheres were hexagonally arranged, and the nano PS apheres occupied the interstices, to keep the periodical structure. According to the stress-strain diagram, the mechanical properties of opals were able to tune by two main ways to make the film behavior changed from typical elastomers to brittle plastic. One of wich was increasing of submicrospheres Tg from -34 ℃ to 8 ℃; And second way was to increase the blended content of nano PS apheres from 5 wt. % to 25 wt. % in the presence of -34 Tg submicrospheres in opal. Base on the above approaches, the ultimate tensile strength and maximum elongation of opals were able to achieve 4.7 Mpa and 1236 %, respectively.
The opal with elastic polymer behaviors possessed great application values because of which exhibited the relationship between the film elongation and optical properties, called mechanical respounsed ability. Thus, the PBA elastic opal was choosen to further study. The results indicated that the red-shifted photonic band gap of elastic film was able to controll by the increased diameter of PBA spheres, or small PS content in opal. On the other hand, the bule-shefted photonic band gap was observed as the elastic film was stretched. And the shifted behavior of λmax was corresponded to the Poisson effect.
Different from the previous technique of rapid synthesis of organic/organic spheres, mixed silane was choosed as introduced monomer to extend the technique to synthesize organic/inorganic PS/SiO2 spheres. The polarity of mixed silane and the mechanical properties of fabricating SiO2 were able to tune by adjusting the feeding ratio between MTES (Triethoxymethylsilane) and TEOS (Tetraethyl orthosilicate). Subsequently, the silane was introduced onto the surface of PS particle, just by acting force of simple diffusion, and further reacted to SiO2. Finally, the monodispersed, hollow SiO2 spheres were obtained by calcinating the PS/SiO2 spheres.
關鍵字(中) ★ 硬核軟殼次微米球
★ 玻璃轉移溫度
★ 彈性光子晶體薄膜
★ 機械應答
★ PS/SiO2次微米球
關鍵字(英) ★ hard core/soft shell submicrospheres
★ Glass transition temperature
★ elastic opal film
★ mechanical response
★ PS/SiO2 submicrospheres
論文目次 摘要 I
ABSTRACT III
謝誌 V
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 均一粒徑高分子球之簡介與文獻回顧 1
1-2 核殼結構高分子球之簡介與文獻回顧 3
1-3 光子晶體之簡介與文獻回顧 6
1-4 中空SiO2球之製備與文獻回顧 11
1-5 研究目的與架構 13
1-6 參考文獻 15
第二章 均一粒徑有機/有機 PS/P(ST-CO-BMA) 次微米球的製備及其應用 25
2-1 前言與研究目的 25
2-2 實驗部分 28
2-2-1 實驗藥品 28
2-2-2 實驗儀器與設備 28
2-2-3 實驗方法 30
2-2-3-1 單體精製 30
2-2-3-2 反應條件 30
2-2-3-3 製備PS高分子核心 31
2-2-3-4 核/殼結構次微米球之製備 32
2-2-3-5 光子晶體之製備 33
2-2-3-6 儀器分析 33
2-3 結果與討論 35
2-3-1 PS核心之鑑定 36
2-3-2 在不同PS轉化率下製備PS/P(St-co-BMA)核殼結構球 41
2-3-3 在相同PS轉化率下製備具不同殼層厚度之PS/P(St-co-BMA)核殼結構球 46
2-3-4 光子晶體薄膜之製備與鑑定 50
2-4 結論 59
2-5 參考文獻 60
第三章不同玻璃轉移溫度之次微米球的製備及其應用 64
3-1 前言與研究目的 64
3-2 實驗部分 67
3-2-1 實驗藥品 67
3-2-2 實驗儀器與設備 67
3-2-3 實驗方法 69
3-2-3-1 單體精製 69
3-2-3-2 反應條件 69
3-2-3-3 製備具不同玻璃轉移溫度之次微米球 70
3-2-3-4 製備聚苯乙烯奈米球(PS小球) 70
3-2-3-5 光子晶體薄膜之製備 70
3-2-3-6 儀器分析 70
3-3 結果與討論 72
3-3-1 不同玻璃轉移溫度次微米球之鑑定 73
3-3-2 光子晶體薄膜結構之鑑定 78
3-3-3 光子晶體薄膜光學特性之鑑定 82
3-3-4 光子晶體薄膜機械性質之鑑定 84
3-4 結論 88
3-5 參考文獻 89
第四章不同粒徑PBA 次微米球的製備及其應用 95
4-1 前言與研究目的 95
4-2 實驗部分 97
4-2-1 實驗藥品 97
4-2-2 實驗儀器與設備 97
4-2-3 實驗方法 99
4-2-3-1 單體精製 99
4-2-3-2 反應條件 99
4-2-3-3 製備具不同粒徑之PBA次微米球 100
4-2-3-4 製備PS奈米球 100
4-2-3-5 光子晶體薄膜之製備 100
4-2-3-6 儀器分析 100
4-3 結果與討論 102
4-3-1 不同粒徑之PBA核心鑑定 103
4-3-2 光子晶體薄膜結構之鑑定 106
4-3-3 光子晶體薄膜光學特性之鑑定 113
4-3-4 光子晶體薄膜機械應答性質之鑑定 119
4-4 結論 123
4-5 參考文獻 124
第五章均一粒徑有機/無機 PS/SIO2次微米球的製備及其應用 128
5-1 前言與研究目的 128
5-2 實驗部分 131
5-2-1 實驗藥品 131
5-2-2 實驗儀器與設備 131
5-2-3 實驗方法 133
5-2-3-1 單體精製 133
5-2-3-2 反應條件 133
5-2-3-3製備PS高分子核心 134
5-2-3-4核/殼結構PS/SiO2次微米球之製備 134
5-2-3-5 中空SiO2球之製備 134
5-2-3-6 儀器分析 134
5-3 結果與討論 136
5-3-1 PS 核心鑑定 137
5-3-2 PS/SiO2 結構鑑定 142
5-3-3 製備中空SiO2次微米球 150
5-4 結論 156
5-5 參考文獻 157
第六章總結 163
參考文獻 1. H. Liu, H. L. Li, Z. L. Ding, A. P. Fu, H. Y. Wang, P. Z. Guo, J. Q. Yu, C. G. Wang, and X. S. Zhao, ’Preparation of Porous Hollow Sio2 Spheres by a Modified Stober Process Using Mf Microspheres as Templates’, Journal of Cluster Science, 23 (2012), 273-285.
2. S. Hyuk Im, U. Jeong, and Y. Xia, ’Polymer Hollow Particles with Controllable Holes in Their Surfaces’, Nat Mater, 4 (2005), 671-675.
3. P. Jiang, J. F. Bertone, and V. L. Colvin, ’A Lost-Wax Approach to Monodisperse Colloids and Their Crystals’, Science, 291 (2001), 453-457.
4. Y. S. Li, J. L. Shi, Z. L. Hua, H. R. Chen, M. L. Ruan, and D. S. Yan, ’Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability’, Nano Letters, 3 (2003), 609-612.
5. U. Jeong, Y. L. Wang, M. Ibisate, and Y. N. Xia, ’Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres’, Advanced Functional Materials, 15 (2005), 1907-1921.
6. M. Yang, J. Ma, C. L. Zhang, Z. Z. Yang, and Y. F. Lu, ’General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures’, Angewandte Chemie-International Edition, 44 (2005), 6727-6730.
7. M. M. Ren, R. Ravikrishna, and K. T. Valsaraj, ’Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania’, Environmental Science & Technology, 40 (2006), 7029-7033.
8. X. F. Song, and L. Gao, ’Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania Via Sol-Gel Process and Enhanced Photocatalytic Activities’, Journal of Physical Chemistry C, 111 (2007), 8180-8187.
9. X. W. Lou, L. A. Archer, and Z. C. Yang, ’Hollow Micro-/Nanostructures: Synthesis and Applications’, Advanced Materials, 20 (2008), 3987-4019.
10. H. Hu, H. Zhou, J. Liang, L. An, A. Dai, X. Li, H. Yang, S. Yang, and H. Wu, ’Facile Synthesis of Amino-Functionalized Hollow Silica Microspheres and Their Potential Application for Ultrasound Imaging’, J Colloid Interface Sci, 358 (2011), 392-398.
11. I. Csetneki, G. Filipcsei, and M. Zrinyi, ’Smart Nanocomposite Polymer Membranes with on/Off Switching Control’, Macromolecules, 39 (2006), 1939-1942.
12. H. C. Zeng, ’Synthetic Architecture of Interior Space for Inorganic Nanostructures’, Journal of Materials Chemistry, 16 (2006), 649-662.
13. H. Nakamura, M. Ishii, A. Tsukigase, M. Harada, and H. Nakano, ’Close-Packed Colloidal Crystalline Arrays Composed of Polystyrene Latex Coated with Titania Nanosheets’, Langmuir, 21 (2005), 8918-8922.
14. Wei Zhao, Lili Feng, Rong Yang, Jie Zheng, and Xingguo Li, ’Synthesis, Characterization, and Photocatalytic Properties of Ag Modified Hollow Sio2/Tio2 Hybrid Microspheres’, Applied Catalysis B: Environmental, 103 (2011), 181-189.
15. W. G. Leng, M. Chen, S. X. Zhou, and L. M. Wu, ’Capillary Force Induced Formation of Monodisperse Polystyrene/Silica Organic-Inorganic Hybrid Hollow Spheres’, Langmuir, 26 (2010), 14271-14275.
16. I. Tissot, J. P. Reymond, F. Lefebvre, and E. Bourgeat-Lami, ’Sioh-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles’, Chemistry of Materials, 14 (2002), 1325-1331.
17. J. G. Yu, X. X. Yu, B. B. Huang, X. Y. Zhang, and Y. Dai, ’Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Novel Cage-Like Ferric Oxide Hollow Spheres’, Crystal Growth & Design, 9 (2009), 1474-1480.
18. T. Nakashima, and N. Kimizuka, ’Interfacial Synthesis of Hollow Tio2 Microspheres in Ionic Liquids’, Journal of the American Chemical Society, 125 (2003), 6386-6387
19. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker, and C. J. Brinker, ’Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles’, Nature, 398 (1999), 223-226.
20. F. Caruso, R. A. Caruso, and H. Mohwald, ’Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating’, Science, 282 (1998), 1111-1114.
21. T. R. Zhang, Q. Zhang, J. P. Ge, J. Goebl, M. W. Sun, Y. S. Yan, Y. S. Liu, C. L. Chang, J. H. Guo, and Y. D. Yin, ’A Self-Templated Route to Hollow Silica Microspheres’, Journal of Physical Chemistry C, 113 (2009), 3168-3175.
22. C. I. Zoldesi, P. Steegstra, and A. Imhof, ’Encapsulation of Emulsion Droplets by Organo-Silica Shells’, Journal of Colloid and Interface Science, 308 (2007), 121-129.
23. P. Hu, L. J. Yu, A. H. Zuo, C. Y. Guo, and F. L. Yuan, ’Fabrication of Monodisperse Magnetite Hollow Spheres’, Journal of Physical Chemistry C, 113 (2009), 900-906.
24. Y. Q. Yeh, B. C. Chen, H. P. Lin, and C. Y. Tang, ’Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic-Anionic-Neutral Block Copolymer Ternary Surfactants’, Langmuir, 22 (2006), 6-9.
25. Y. Lu, J. McLellan, and Y. N. Xia, ’Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells’, Langmuir, 20 (2004), 3464-3470.
26. B. Y. Ouyang, C. W. Chi, F. C. Chen, Q. F. Xi, and Y. Yang, ’High-Conductivity Poly (3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate) Film and Its Application in Polymer Optoelectronic Devices’, Advanced Functional Materials, 15 (2005), 203-208.
27. G. G. Qi, Y. B. Wang, L. Estevez, A. K. Switzer, X. N. Duan, X. F. Yang, and E. P. Giannelis, ’Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell’, Chemistry of Materials, 22 (2010), 2693-2695.
28. I. Park, S. H. Ko, Y. S. An, K. H. Choi, H. Chun, S. Lee, and G. Kim, ’Monodisperse Polystyrene-Silica Core-Shell Particles and Silica Hollow Spheres Prepared by the Stober Method’, Journal of Nanoscience and Nanotechnology, 9 (2009), 7224-7228.
29. Y. Le, J. F. Chen, and W. C. Wang, ’Study on the Silica Hollow Spheres by Experiment and Molecular Simulation’, Applied Surface Science, 230 (2004), 319-326.
30. G. Ni, W. Yang, L. Bo, H. Guo, W. Zhang, and J. Gao, ’Preparation of Polystyrene/Sio2 Nanocomposites by Surface-Initiated Nitroxide-Mediated Radical Polymerization’, Chinese Science Bulletin, 51 (2006), 1644-1647.
31. K. Zhang, L. L. Zheng, X. H. Zhang, X. Chen, and B. Yang, ’Silica-Pmma Core-Shell and Hollow Nanospheres’, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 277 (2006), 145-150.
32. Z. Zeng, J. Yu, and Z. X. Guo, ’Preparation of Polymer/Silica Composite Nanoparticles Bearing Carboxyl Groups on the Surface Via Emulsifier-Free Emulsion Copolymerization’, Journal of Polymer Science Part a-Polymer Chemistry, 43 (2005), 2826-2835.
33. J. Lee, C. K. Hong, S. Choe, and S. E. Shim, ’Synthesis of Polystyrene/Silica Composite Particles by Soap-Free Emulsion Polymerization Using Positively Charged Colloidal Silica’, Journal of Colloid and Interface Science, 310 (2007), 112-120.
34. A. Schmid, S. Fujii, S. P. Armes, C. A. P. Leite, F. Galembeck, H. Minami, N. Saito, and M. Okubo, ’Polystyrene-Silica Colloidal Nanocomposite Particles Prepared by Alcoholic Dispersion Polymerization’, Chemistry of Materials, 19 (2007), 2435-2445.
35. J. Yang, T. Hasell, W. X. Wang, J. Li, P. D. Brown, M. Poliakoff, E. Lester, and S. M. Howdle, ’Preparation of Hybrid Polymer Nanocomposite Microparticles by a Nanoparticle Stabilised Dispersion Polymerisation’, Journal of Materials Chemistry, 18 (2008), 998-1001.
36. Y. D. Liu, W. L. Zhang, and H. J. Choi, ’Pickering Emulsion Polymerization of Core-Shell-Structured Polyaniline@Sio2 Nanoparticles and Their Electrorheological Response’, Colloid and Polymer Science, 290 (2012), 855-860.
37. K. Zhang, W. Wu, H. Meng, K. Guo, and J. F. Chen, ’Pickering Emulsion Polymerization: Preparation of Polystyrene/Nano-Sio2 Composite Microspheres with Core-Shell Structure’, Powder Technology, 190 (2009), 393-400.
38. S. A. F. Bon, and T. Chen, ’Pickering Stabilization as a Tool in the Fabrication of Complex Nanopatterned Silica Microcapsules’, Langmuir, 23 (2007), 9527-9530.
39. S. Cauvin, P. J. Colver, and S. A. F. Bon, ’Pickering Stabilized Miniemulsion Polymerization: Preparation of Clay Armored Latexes’, Macromolecules, 38 (2005), 7887-7889.
40. J. Yang, J. U. Lind, and W. C. Trogler, ’Synthesis of Hollow Silica and Titania Nanospheres’, Chemistry of Materials, 20 (2008), 2875-2877.
41. J. C. Bao, Y. Y. Liang, Z. Xu, and L. Si, ’Facile Synthesis of Hollow Nickel Submicrometer Spheres’, Advanced Materials, 15 (2003), 1832-1835.
42. M. Baca, W. J. Li, P. Du, G. Mul, J. A. Moulijn, and M. O. Coppens, ’Catalytic Characterization of Mesoporous Ti-Silica Hollow Spheres’, Catalysis Letters, 109 (2006), 207-210.
43. Y. H. Cong, G. L. Wang, M. H. Xiong, Y. Huang, Z. F. Hong, D. L. Wang, J. J. Li, and L. B. Li, ’A Facile Interfacial Reaction Route to Prepare Magnetic Hollow Spheres with Tunable Shell Thickness’, Langmuir, 24 (2008), 6624-6629.
44. D. B. Wang, C. X. Song, Y. S. Lin, and Z. S. Hu, ’Preparation and Characterization of Tio2 Hollow Spheres’, Materials Letters, 60 (2006), 77-80.
45. C. Liu, A. L. Wang, H. B. Yin, Y. T. Shen, and T. S. Jiang, ’Preparation of Nanosized Hollow Silica Spheres from Na2sio3 Using Fe3o4 Nanoparticles as Templates’, Particuology, 10 (2012), 352-358.
46. L. Zhang, H. B. Wang, Z. F. Zhang, F. Qin, W. L. Liu, and Z. T. Song, ’Preparation of Monodisperse Polystyrene/Silica Core-Shell Nano-Composite Abrasive with Controllable Size and Its Chemical Mechanical Polishing Performance on Copper’, Applied Surface Science, 258 (2011), 1217-1224.
47. Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, and X. P. Dong, ’A Facile Method to Synthesize Novel Hollow Mesoporous Silica Spheres and Advanced Storage Property’, Microporous and Mesoporous Materials, 84 (2005), 218-222.
48. Y. H. Zhang, H. Chen, and Q. C. Zou, ’Anionic Surfactant for Silica-Coated Polystyrene Composite Microspheres Prepared with Miniemulsion Polymerization’, Colloid and Polymer Science, 287 (2009), 1221-1227.
49. T. X. Ye, Y. Y. Du, C. Y. He, B. Qiu, Y. R. Wang, and X. Chen, ’Preparation of Novel Core-Shell Silica Particles for Ph Sensing Using Ratiometric Fluorescence Approach’, Analytical Methods, 4 (2012), 1001-1004.
指導教授 陳暉(Hui Chen) 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明