參考文獻 |
[1] C. Y. Lu, H. Kuan, "Nonvolatile semiconductor memory revolutionizing information storage" IEEE Nanotechnology Magazine.vol. 3, p. 4-9, 2009.
[2] 余昭倫,「綜觀新世代記憶體-相變化記憶體」,Digitimes技術IT,2006。
[3] T. Nakamura, Y. Fujimori, N. Izumi and A. Kamisawa,“Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys.vol. 37, p. 1325, 1998.
[4] T. Sugibayashi, Devices Platform Research Laboratories, NEC Corp, “NV Logic Prototype with MRAM Runs at 400MHz “Nikkei Electronics Asia,July 2009.
[5]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,「先進記憶體簡介」,國研科技創刊號。
[6] R. Waser, R. Dittmann, G. Straikov, and K. Szot, “Redox-Based Resistive Switching Memories -Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater. 2632(2009).
[7] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo , U-In Chung, and J. T. Moon, “Highly Scalable Non-volatile Resisitive Memory using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”,Tech. Dig. -Int. Electron Devices Meet. 2004, 587 (2004).
[8] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”,Appl. Phys. Lett. 86, 262907 (2005)
[9] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions ”, Jpn. J. Appl. Phys. 44 L345 (2005).
[10] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T.A. Tang, B. A. Chen, and Y. Y. Lin, “Forming Process Investigation of CuxO Memory Films”, IEEE Electron Device Lett., 29 (1), 47-79 (2008).
[11] B. Gao, L. Liu, X. Liu, and J. Kang, "Resistive switching characteristicsin HfOx layer by using current sweep mode", Microelectronic Engineering, vol. 94, pp. 14-17, 2012.
[12] R. Waser and M. Aono, "Nanoionics-based resistive switching memories",Nat Mater, vol. 6, pp. 833-840, 2007.
[13] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, ―Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application‖, Nano Letters, Vol.9, 1636(2009).
[14] N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman,90"Evidence for compliance controlled oxygen vacancy and metal filamentbased resistive switching mechanisms in RRAM", MicroelectronicEngineering, vol. 88, pp. 1124-1128, 2011.
[15] S. Yu, X. Guan, and H.-S. Philip Wong,"On the Stochastic Nature of Resistive Switching in Metal Oxide RRAM:Physical Modeling, Monte Carlo Simulation, and Experimental Characterization" ,IEEE Electron Device Lett. 17.3.1 - 17.3.4,2011.
[16] T. Baiatu, R. Waser, and K.-H. Härdtl, "Dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism", Journal of the American Ceramic Society, vol. 73, pp. 1663-1673, 1990.
[17] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversibleresistance change effect in magnetoresistive films”, Appl. Phys. Lett. 76, 2749(2000).
[18] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu,and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”,IEEE Electron Device Lett. 26, 351-353 (2005).
[19] Y. Watanabe, J. G.Bednorz, A. Bietsch, C. Gerber, D. Widmer, A.Beck, and S. J. Wind, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738-3740 (2001).
[20] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer,“Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. vol.77, p.139 , 2000.
[21] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. H. Lee, W.Kim, Y. Park, I. K. Yoo and H. Hwang, “Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application,” in IEDM Dig. Tech., pp. 758-761, 2005.
[22] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I.K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,”Appl. Phys. Lett. vol. 85, p. 5655, 2004.
[23] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, “Identification of a determining parameter for resistive switching of TiO2 thin films,”Appl. Phys. Lett. vol. 86, p. 262907, 2005.
[24] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J.Lee, D. H. Seo, D. S. Suh, Y. S. Joung and I. K. Yoo, “Giant and stable conductivity switching behaviors in ZrO2 films deposited by pulsed laser depositions,” Jpn. J. Appl. Phys. pp. L345-L347 ,2005.
[25] K. L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou and Y. J. Lee, “Electrode dependence of filament formation in HfO2 resistive-switching memory,” Appl. Phys. Lett.vol. 109, p. 084104 , 2011.
[26] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films,” Solid-State Electron. 7, 785,1964.
[27] T. W. Hickmott, “Low Frequency negative resistance in thin anodic oxide films,” J. Appl. Phys. vol.33, p.2669 ,1962.
[28] P. G. LeComber, W. E. Spear and A. Ghaith, “Amorphous silicon field device and possible application,” Electron. Lett.vol. 15, pp.179-181, 1979.
[29] B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han and J.F. Kang, “Bipolar resistive switching behaviors of Ag/Si3N4/Pt memorydevice,” 9th International Conference on Solid-State and Integrated-Circuit Technology. pp. 925–927, 2008.
[30] S. H. Jo and W. Lu, "CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory,"Nano Letters,2008.
[31] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., vol. 80, pp. 2997-2999,2002.
[32] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. P. Lu, S. Y. Wang, L.W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A multi-layer stackable thin-film transistor(TFT) NAND-type flash memory,” in IEDM Dig. Tech., pp. 1-4, 2006.
[33] S. M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim Y.Rah, Y. Son, J. Park, M. S. Song, K. H. Kim, J. S. Lim and K. Kim, “Three dimensionally stacked NAND flash memory technology usingstacking single crystal Si layers on ILD and TANOS structure for beyond 30nm node,” in IEDM Dig. Tech., pp. 37-40, 2006.
[34] Tanaka, H., M. Kido, et al. (2007). "Bit cost scalable technology with punch and plug process for ultra high density flash memory." 2007 Symposium on VLSI Technology, Digest of Technical Papers, pp. 14-15.
[35] Katsumata, R., M. Kito, et al. (2009). "Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density Storage Devices." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 136-137.
[36] Jang, J., H. S. Kim, et al. (2009). "Vertical Cell Array using TCAT(Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 192-193.
[37] Kim, J., A. J. Hong, et al. (2009). "Novel Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 186-187.
[38] Kim, W., S. Choi, et al. (2009). "Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 188-189.
[39] Lue, H. T., T. H. Hsu, et al. (2010). "A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device." 2010 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 131-132.
[40] Hung, C. H., H. T. Lue, et al. (2011). "A Highly Scalable Vertical-Gate (VG) 3D NAND Flash with Robust Program Disturb Immunity Using a Novel PN Diode Decoding Structure" 2011 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 68-69.
[41] C. H. Tung, K. L. Pey, L. J. Tang, M. K. Radhakrishnan, W. H. Lin, F.P. and S. Lombardo, “Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient,”Appl. Phys. Lett., vol. 83, pp. 2223-2225, 2003. |