博碩士論文 100324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.16.130.242
姓名 陳煥勳(Huan-Xun Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 三維多位元垂直電阻式記憶體之研究
(The Research of Three-Dimensional Multi-bit Vertical Resistive-Switching Random Access Memory)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電阻式記憶體(RRAM)有著結構簡單的特性,因此具有發展高密度記憶體的潛力,本研究的研究重點即在於利用垂直結構來提高元件的密度,且雙層垂直電阻式記憶體更能有效發揮出高密度的特點。
實驗分為兩部分,第一部分是討論二氧化鉿薄膜製作之雙層垂直電阻式記憶體在不同二氧化鉿厚度及操作面積的情況下其電性的比較。第二部分是討論不同厚度之非晶矽薄膜於垂直電阻式記憶體的電性比較,選擇二氧化鉿以及非晶矽薄膜做為介電層的原因為這兩種材料皆與CMOS製程相容,且 LPCVD 沉積的非晶矽和 ALD沉積的二氧化鉿皆具有良好的階梯覆蓋率。
在雙層垂直電阻式記憶體的實驗中我們可以看到元件可獨立操作,彼此在讀寫時不會互相干擾,且上下兩個電阻式記憶體之I-V特性也相近,較薄的二氧化鉿厚度有著較小的 set voltage 和較佳的耐久力;另外非晶矽薄膜垂直電阻式記憶體在連續操作後仍可維持足夠的記憶窗口,元件的記憶保持力也沒有問題,從結果可以看到較薄的非晶矽薄膜較適合拿來當作垂直電阻式記憶體的介電層。
摘要(英) The essential structure of resistive-switching random access memory (RRAM) could be fabricated on capacitor-like metal/insulator/semiconductor (MIS) or metal/insulator/metal (MIM) stack. The simple structure is promising for development of high density nonvolatile memory (NVM). This research focused on increasing the storage density of RRAM by fabricating vertical structure which including double-layered structure to enhance the improvement of bit-per-area more efficiently.
There are two main sections in this thesis. The HfO2-based double-layered vertical RRAM (VRRAM) will be demonstrated in the first section with different dimension and thickness of HfO2 switch layer. In the second section, we demonstrated an amorphous-silicon-based VRRAM with different thickness of a-Si. HfO2 and a-Si are both compatible with CMOS fabrication process and which are also possessed of superior step coverage to fulfill the vertical structure.
Independent access between different bottom electrodes could be achieved in double-layered VRRAM which accomplished multi-bit operation. The characteristic of the two adjacent cells in the same vertical stack are identical due to excellent program/read disturbance immunity. The HfO2-based VRRAM could achieve lower set voltage (Vset) and better endurance with thinner HfO2 switch layer. The endurance and retention of amorphous-silicon-based VRRAM are both satisfactory with appropriate thickness of a-Si.
關鍵字(中) ★ 三維
★ 多位元
★ 電阻式記憶體
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 vi
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 簡介 4
2-1 記憶體簡介 4
2-1-1 鐵電記憶體(FeRAM) 5
2-1-2 磁阻式記憶體(MRAM) 6
2-1-3 相變化記憶體(PRAM) 7
2-1-4 電阻式記憶體(RRAM) 9
2-2電阻式記憶體介紹 11
2-2-1 電阻轉換現象 11
2-2-2 電阻式記憶體量測種類 16
2-3 電阻轉換現象機制 18
2-3-1 金屬離子的電化學效應(Electrochemical metallization effect) 21
2-3-2 價電子轉換效應(Valance change effect) 24
2-3-3 熱化學效應(Thermochemical effect) 25
2-4電阻式記憶體材料 26
2-4-1 多元金屬氧化物 26
2-4-2 過渡金屬氧化物 28
2-4-3 Si 相關材料 30
2-4-4 有機材料 31
2-5 三維式快閃記憶體 34
第三章.儀器介紹與實驗流程 37
3-1機台簡介 37
3-1-1 Wet bench 37
3-1-2 自動化光阻塗佈及顯影系統(Track) 38
3-1-3 光學步進機(Canon FPA-3oooi5+ Stepper) 38
3-1-4 Lift-off 製程 39
3-1-5 TCP 9400&TCP 9600 39
3-1-6 TEL 5000 40
3-1-7 Mattson& Fusion Ozone 41
3-1-8 原子層沉積系統(ALD) 41
3-1-9 金屬快速升溫退火爐(RTA) 43
3-1-10 水平爐管 43
3-2 電性量測儀器 44
3-3 製程步驟 45
3-3-1 雙層垂直電阻式記憶體 46
3-3-2 垂直電阻式記憶體 47
第四章 雙層垂直電阻式記憶體實驗結果與討論 49
4-1 以原子層沈積製作之二氧化鉿薄膜特性分析 52
4-2 微縮量測 60
4-3 DBIE 66
4-4 不同介電層厚度及不同元件面積對元件的影響 67
第五章 垂直式電阻式記憶體實驗結果與討論 72
5-1 不同厚度之非晶矽薄膜特性分析 73
第六章 結論與未來展望 83
6-1 結論 83
6-2 未來展望 84
參考文獻 85
參考文獻 [1] C. Y. Lu, H. Kuan, "Nonvolatile semiconductor memory revolutionizing information storage" IEEE Nanotechnology Magazine.vol. 3, p. 4-9, 2009.
[2] 余昭倫,「綜觀新世代記憶體-相變化記憶體」,Digitimes技術IT,2006。
[3] T. Nakamura, Y. Fujimori, N. Izumi and A. Kamisawa,“Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys.vol. 37, p. 1325, 1998.
[4] T. Sugibayashi, Devices Platform Research Laboratories, NEC Corp, “NV Logic Prototype with MRAM Runs at 400MHz “Nikkei Electronics Asia,July 2009.
[5]簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,「先進記憶體簡介」,國研科技創刊號。
[6] R. Waser, R. Dittmann, G. Straikov, and K. Szot, “Redox-Based Resistive Switching Memories -Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater. 2632(2009).
[7] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo , U-In Chung, and J. T. Moon, “Highly Scalable Non-volatile Resisitive Memory using Simply Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”,Tech. Dig. -Int. Electron Devices Meet. 2004, 587 (2004).
[8] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films”,Appl. Phys. Lett. 86, 262907 (2005)
[9] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, Y. S. Joung, and I. K. Yoo, “Giant and Stable Conductivity Switching Behaviors in ZrO2 Films Deposited by Pulsed Laser Depositions ”, Jpn. J. Appl. Phys. 44 L345 (2005).
[10] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T.A. Tang, B. A. Chen, and Y. Y. Lin, “Forming Process Investigation of CuxO Memory Films”, IEEE Electron Device Lett., 29 (1), 47-79 (2008).
[11] B. Gao, L. Liu, X. Liu, and J. Kang, "Resistive switching characteristicsin HfOx layer by using current sweep mode", Microelectronic Engineering, vol. 94, pp. 14-17, 2012.
[12] R. Waser and M. Aono, "Nanoionics-based resistive switching memories",Nat Mater, vol. 6, pp. 833-840, 2007.
[13] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, ―Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application‖, Nano Letters, Vol.9, 1636(2009).
[14] N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman,90"Evidence for compliance controlled oxygen vacancy and metal filamentbased resistive switching mechanisms in RRAM", MicroelectronicEngineering, vol. 88, pp. 1124-1128, 2011.
[15] S. Yu, X. Guan, and H.-S. Philip Wong,"On the Stochastic Nature of Resistive Switching in Metal Oxide RRAM:Physical Modeling, Monte Carlo Simulation, and Experimental Characterization" ,IEEE Electron Device Lett. 17.3.1 - 17.3.4,2011.
[16] T. Baiatu, R. Waser, and K.-H. Härdtl, "Dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism", Journal of the American Ceramic Society, vol. 73, pp. 1663-1673, 1990.
[17] S. Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversibleresistance change effect in magnetoresistive films”, Appl. Phys. Lett. 76, 2749(2000).
[18] C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu,and T. Y. Tseng, “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film”,IEEE Electron Device Lett. 26, 351-353 (2005).
[19] Y. Watanabe, J. G.Bednorz, A. Bietsch, C. Gerber, D. Widmer, A.Beck, and S. J. Wind, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett. 78, 3738-3740 (2001).
[20] A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer,“Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. vol.77, p.139 , 2000.
[21] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. H. Lee, W.Kim, Y. Park, I. K. Yoo and H. Hwang, “Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application,” in IEDM Dig. Tech., pp. 758-761, 2005.
[22] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I.K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,”Appl. Phys. Lett. vol. 85, p. 5655, 2004.
[23] C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, “Identification of a determining parameter for resistive switching of TiO2 thin films,”Appl. Phys. Lett. vol. 86, p. 262907, 2005.
[24] S. Kim, I. Byun, I. Hwang, J. Kim, J. Choi, B. H. Park, S. Seo, M. J.Lee, D. H. Seo, D. S. Suh, Y. S. Joung and I. K. Yoo, “Giant and stable conductivity switching behaviors in ZrO2 films deposited by pulsed laser depositions,” Jpn. J. Appl. Phys. pp. L345-L347 ,2005.
[25] K. L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou and Y. J. Lee, “Electrode dependence of filament formation in HfO2 resistive-switching memory,” Appl. Phys. Lett.vol. 109, p. 084104 , 2011.
[26] J. F. Gibbons and W. E. Beadle, “Switching properties of thin NiO films,” Solid-State Electron. 7, 785,1964.
[27] T. W. Hickmott, “Low Frequency negative resistance in thin anodic oxide films,” J. Appl. Phys. vol.33, p.2669 ,1962.
[28] P. G. LeComber, W. E. Spear and A. Ghaith, “Amorphous silicon field device and possible application,” Electron. Lett.vol. 15, pp.179-181, 1979.
[29] B. Sun, L. F. Liu, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han and J.F. Kang, “Bipolar resistive switching behaviors of Ag/Si3N4/Pt memorydevice,” 9th International Conference on Solid-State and Integrated-Circuit Technology. pp. 925–927, 2008.
[30] S. H. Jo and W. Lu, "CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory,"Nano Letters,2008.
[31] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett., vol. 80, pp. 2997-2999,2002.
[32] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, C. P. Lu, S. Y. Wang, L.W. Yang, T. Yang, K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A multi-layer stackable thin-film transistor(TFT) NAND-type flash memory,” in IEDM Dig. Tech., pp. 1-4, 2006.
[33] S. M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang, J. Kim Y.Rah, Y. Son, J. Park, M. S. Song, K. H. Kim, J. S. Lim and K. Kim, “Three dimensionally stacked NAND flash memory technology usingstacking single crystal Si layers on ILD and TANOS structure for beyond 30nm node,” in IEDM Dig. Tech., pp. 37-40, 2006.
[34] Tanaka, H., M. Kido, et al. (2007). "Bit cost scalable technology with punch and plug process for ultra high density flash memory." 2007 Symposium on VLSI Technology, Digest of Technical Papers, pp. 14-15.
[35] Katsumata, R., M. Kito, et al. (2009). "Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-Level-Cell Operation for Ultra High Density Storage Devices." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 136-137.
[36] Jang, J., H. S. Kim, et al. (2009). "Vertical Cell Array using TCAT(Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 192-193.
[37] Kim, J., A. J. Hong, et al. (2009). "Novel Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 186-187.
[38] Kim, W., S. Choi, et al. (2009). "Multi-Layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage." 2009 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 188-189.
[39] Lue, H. T., T. H. Hsu, et al. (2010). "A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device." 2010 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 131-132.
[40] Hung, C. H., H. T. Lue, et al. (2011). "A Highly Scalable Vertical-Gate (VG) 3D NAND Flash with Robust Program Disturb Immunity Using a Novel PN Diode Decoding Structure" 2011 Symposium on Vlsi Technology, Digest of Technical Papers, pp. 68-69.
[41] C. H. Tung, K. L. Pey, L. J. Tang, M. K. Radhakrishnan, W. H. Lin, F.P. and S. Lombardo, “Percolation path and dielectric-breakdown-induced-epitaxy evolution during ultrathin gate dielectric breakdown transient,”Appl. Phys. Lett., vol. 83, pp. 2223-2225, 2003.
指導教授 周正堂、李耀仁
(Cheng-Tang Chou、Yao-Jen Li)
審核日期 2013-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明