博碩士論文 100324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.221.41.214
姓名 黃翊瑋(Yi-wei Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
(DRUG RESISTANCE CELLS OF COLON CANCER CELL LINE ENHANCED PRODUCTION OF CARCINOMA EMBRYONIC ANTIGEN, BUT ARE NOT CANCER-INITIATING CELLS)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 惡性腫瘤組織裡包含著一部分的特定族群,稱作為癌症起始細胞或癌症幹細胞,其細胞具有幹細胞特性、卓越的自我恢復能力,並且為促成惡性腫瘤形成、轉移的主要關鍵。目前為止,有部分的研究宣稱發現大腸癌癌症幹細胞的細胞表面標記,如:CD29、CD44、ESA、CD166、CD24、Lgr5、CD133以及ALDH-1,其中以CD133最廣為人知。然而這些細胞表面標記並沒有確切的證據顯示能有效的表現並標記大腸癌癌症幹細胞,而目前唯一可信的辦法只有藉由注射樣本細胞至老鼠體內觀察其腫瘤生成情況來確定其研究結果。
而我們的實驗是利用經由抗癌藥物添加至細胞培養液裡,再經由一至二周的體外培養,所存活的殘留細胞認定為具有抗藥性的大腸癌癌症細胞,並且我們相信這些存活細胞有極大可能是大腸癌癌症幹細胞,利用這些樣本細胞進行一連串的癌症幹細胞表現特性實驗,如:癌胚抗原表現量,CD133細胞表面標記表現以及動物體內注射樣本細胞之腫瘤生成觀察。其實驗結果顯示,具有抗藥性之癌症細胞其癌胚抗原表現量為未治療之癌症細胞表現量的二至四倍;但在細胞表面標記上,具有抗藥性之癌症細胞其表現量卻遠低於未治療之癌症細胞。而在腫瘤生成觀察上,具有抗藥性之癌症細胞在八周的觀察期後未有任何的腫瘤生成,但未治療之癌症細胞再注射的二到四周即有腫瘤生成。由以上實驗結果,我們推論具有抗藥性之癌症細胞能提高癌胚抗原的表現量,但並不是癌症幹細胞或癌症起始細胞。
摘要(英) Tumors contain a small subpopulation of cancer-initiating cells, known as cancer stem cells (CSCs) that exhibit a self-renewing capacity and are responsible for tumor generation. Cancer-initiating cells (CSCs) are the cells which would form tumors while having stem cell properties. It is suggested that CSCs persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Specific surface markers for colon CSCs have been reported, and CD133 is the most studied surface marker for colon CSCs. Several other colon CSC markers have been proposed; these include: ESA, CD44, CD166, Msi-1, CD29, CD24, Lgr5, and ALDH-1. However, exact and reliable surface markers of colon CSCs have not yet been identified rationally. The only reliable method for identifying and quantifying CSCs is the observation of tumor formation in a serial xenotransplantation model.
In this study, The drug-resistance cells of human colorectal adenocarcinoma tumor (LoVo) cells were found to produce more than two order higher amount of carcinoembryonic antigen (CEA) per cell, when less than 1% of the cells were survived in serum free medium or serum medium because of addition of anticancer drugs (5-FU, aspirin, oxaliplatin, cisplatin, Rosewell Park regime, or Mayo Clinic regime) in the culture medium. Drug-resistant LoVo cells were analyzed to determine whether those cells had CSC characteristics, e.g., small size of the cells/colonosphere and strong expression of CSC surface markers, as indicated by flow cytometry and immunohistochemistry analysis. Finally, in vivo tumorigenesis was examined by subcutaneously xenotransplanting the isolated drug-resistant LoVo cells into mice; we then evaluated whether the drug-resistant cells isolated in this study were CSCs. We found that drug-resistant cells, which comprised less than 1% of the LoVo human colon cancer cells that survived in serum-free or serum-containing medium supplemented with drugs (5-fluorouracil, acetylsalicylic acid, oxaliplatin, and cisplatin) were found to produce more than two orders higher than normal levels of carcinoembryonic antigen (CEA) per cell.
These results raised the question of whether CSCs could be isolated from drug-resistant colon cancer cells when anticancer drugs are added to the culture medium. The percentage of cells positive for CD133, which is known to be a typical marker of CSCs, decreased in parallel with a decrease in the cell survival rate after the addition of anticancer drugs in both the serum-free and serum-containing media. Drug-resistant LoVo cells had lower expression of CSC markers, including CD29, CD44, CD166, ALDH-1, Lgr5, and Msi-1, compared with the parental LoVo cells based on immunohistochemical examination.
It was concluded that the drug resistance cells of colon cancer cell line, which were isolated by addition of anticancer drugs in culture medium could enhance production of CEA in both serum free medium and serum medium, but were found not to be CSCs from tumor generation experiments in vivo, although CSCs were believed to be drug resistance cells in general.
關鍵字(中) ★ 大腸癌
★ 抗藥性
★ 癌症幹細胞
關鍵字(英) ★ colon cancer
★ drug resistance
★ cancer stem cells
論文目次 Chapter 1 Introduction 1
1-1 The relationship between stem cells and cancer stem cells 1
1-1-1 Stem cells 1
1-1-2 Cancers and cancer stem cells 2
1-1-3 Identity of cancer stem cells 4
1-1-4 Relationship between cancer cells and microenvironment 9
1-2 Analysis of CSCs by flow cytometry 13
1-3 CEA (carcinoembryonic antigen) detection by ELISA 15
1-4 Immunofluorescent staining (IF) 17
1-5 In vivo tumorigenic assay 19
Chapter 2 Materials and Methods 20
2-1 Cell lines 20
2-1-1 Cancer cell lines 20
2-2 Cell culture condition 20
2-2-1 LoVo cells 20
2-2-2 COLO205 cells 20
2-2-3 Defined serum-free condition 21
2-3 Preparation of chemotherapeutic agents 21
2-4 Preparation of buffer solution 22
2-5 In vitro chemotherapy 23
2-6 CEA production analysis 23
2-7 Flow cytometry 24
2-8 In vivo tumor challenge 25
2-9 Immunofluorescence 27
Chapter 3 Results and Discussion 28
3-1 The cell morphology of LoVo colon cancer cells and COLO205 colon cancer cells cultivated under drug treatment 28
3-2 The effect of drug-treatment on cell morphology 28
3-3 The CEA production of LoVo cells under anti-cancer drug treatment 38
3-4 Characterization of purified cancer stem cells (CSCs) 48
3-4-1 Putative cancer stem cell makers analyzed by immunofluorescence staining 48
3-5 In vivo tumorigenic bioassay 56
3-5-1 The tumorigenic potential of putative cancer stem cells sorted by chemotherapy 56
3-5-2 The tumorigenic potential of LoVo cells and COLO205 cells co-injected subcutaneously with several ECMs 56
Chapter 4 Conclusion 60
Supplementary data 62
Reference 66
參考文獻 1. Lin, H.F. and T. Schagat, Neuroblasts: A model for the asymmetric division of stem cells. Trends in Genetics, 1997. 13(1): p. 33-39.
2. Verfaillie, C.M., M.F. Pera, and P.M. Lansdorp, Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program, 2002: p. 369-91.
3. Guo, W., J.L. Lasky, and H. Wu, Cancer stem cells. Pediatric Research, 2006. 59(4): p. 59r-64r.
4. Dewey, M.J., et al., Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5564-8.
5. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
6. Martin, G.R., Teratocarcinomas as a model system for the study of embryogenesis and neoplasia. Cell, 1975. 5: p. 229-43.
7. Spangrude, G.J., S. Heimfeld, and I.L. Weissman, Purification and characterization of mouse hematopoietic stem cells. Science, 1988. 241(4861): p. 58-62.
8. Morrison, S.J. and I.L. Weissman, The Long-Term Repopulating Subset of Hematopoietic Stem-Cells Is Deterministic and Isolatable by Phenotype. Immunity, 1994. 1(8): p. 661-673.
9. Baum, C.M., et al., Isolation of a Candidate Human Hematopoietic Stem-Cell Population. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(7): p. 2804-2808.
10. Osawa, M., et al., Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 1996. 273(5272): p. 242-245.
11. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-111.
12. Smith, C., Hematopoietic Stem Cells and Hematopoiesis. Cancer Control, 2003. 10: p. 9-16.
13. Clarke, M.F. and M. Fuller, Stem cells and cancer: Two faces of eve. Cell, 2006. 124(6): p. 1111-1115.
14. Dalerba, P., R.W. Cho, and M.F. Clarke, Cancer stem cells: Models and concepts. Annual Review of Medicine, 2007. 58: p. 267-284.
15. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 2003. 3(12): p. 895-902.
16. Trumpp, A. and O.D. Wiestler, Mechanisms of Disease: cancer stem cells--targeting the evil twin. Nat Clin Pract Oncol, 2008. 5(6): p. 337-47.
17. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
18. Spira, A. and D.S. Ettinger, Multidisciplinary management of lung cancer. N Engl J Med, 2004. 350(4): p. 379-92.
19. Hsu, H.S., et al., Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res, 2005. 11(15): p. 5410-6.
20. Chen, Y.C., et al., Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. Plos One, 2008. 3(7).
21. Socinski, M.A. and J.A. Bogart, Limited-stage small-cell lung cancer: The current status of combined-modality therapy. Journal of Clinical Oncology, 2007. 25(26): p. 4137-4145.
22. Bernstein, E.D., S.M. Herbert, and N.H. Hanna, Chemotherapy and radiotherapy in the treatment of resectable non-small-cell lung cancer. Annals of Surgical Oncology, 2006. 13(3): p. 291-301.
23. Lam, W.K. and D.N. Watkins, Lung cancer: Future directions. Respirology, 2007. 12(4): p. 471-477.
24. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115.
25. Jemal, A., et al., Cancer statistics, 2006. Ca-a Cancer Journal for Clinicians, 2006. 56(2): p. 106-130.
26. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(7): p. 3983-3988.
27. Goodell, M.A., et al., Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 1996. 183(4): p. 1797-1806.
28. Chiasson, B.J., et al., Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. Journal of Neuroscience, 1999. 19(11): p. 4462-4471.
29. Seaberg, R.M. and D. van der Kooy, Stem and progenitor cells: the premature desertion of rigorous definitions. Trends in Neurosciences, 2003. 26(3): p. 125-131.
30. Todaro, M., et al., Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010. 138(6): p. 2151-2162.
31. Klonisch, T., et al., Cancer stem cell markers in common cancers - therapeutic implications. Trends in Molecular Medicine, 2008. 14(10): p. 450-460.
32. Vermeulen, L., et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(36): p. 13427-13432.
33. Ricci-Vitiani, L., et al., Colon cancer stem cells. Journal of Molecular Medicine-Jmm, 2009. 87(11): p. 1097-1104.
34. Papailiou, J., et al., Stem cells in colon cancer. A new era in cancer theory begins. International Journal of Colorectal Disease, 2011. 26(1): p. 1-11.
35. Yin, A.H., et al., AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 1997. 90(12): p. 5002-5012.
36. O’Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-110.
37. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
38. Hilbe, W., et al., CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. Journal of Clinical Pathology, 2004. 57(9): p. 965-969.
39. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 2008. 15(3): p. 504-514.
40. Haegebarth, A. and H. Clevers, Wnt Signaling, Lgr5, and Stem Cells in the Intestine and Skin. American Journal of Pathology, 2009. 174(3): p. 715-721.
41. Barker, N., et al., Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 2007. 449(7165): p. 1003-U1.
42. Sato, T., et al., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009. 459(7244): p. 262-U147.
43. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009. 457(7229): p. 608-U119.
44. Kaneko, Y., et al., Musashi1: An evolutionally conserved marker for CNS progenitor cells including neural stem cells. Developmental Neuroscience, 2000. 22(1-2): p. 139-153.
45. Booth, C. and C.S. Potten, Gut instincts: thoughts on intestinal epithelial stem cells. Journal of Clinical Investigation, 2000. 105(11): p. 1493-1499.
46. Nishimura, S., et al., Expression of Musashi-1 in human normal colon crypt cells - A possible stem cell marker of human colon epithelium. Digestive Diseases and Sciences, 2003. 48(8): p. 1523-1529.
47. Huang, E.H., et al., Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Research, 2009. 69(8): p. 3382-3389.
48. Bhardwaj, G., et al., Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunology, 2001. 2(2): p. 172-180.
49. Costello, R.T., et al., Human acute myeloid leukemia CD34(+)/CD38(-) progenitor cells have decreased sensitivity to chemotherapy and fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 2000. 60(16): p. 4403-4411.
50. Ouhtit, A., et al., In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. American Journal of Pathology, 2007. 171(6): p. 2033-2039.
51. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Research, 2003. 63(18): p. 5821-5828.
52. Richardson, G.D., et al., CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 2004. 117(16): p. 3539-3545.
53. Collins, A.T., et al., Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 2005. 65(23): p. 10946-10951.
54. Xin, L., D.A. Lawson, and O.N. Witte, The Sca-1 cell surface marker enriches for a prostateregenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(19): p. 6942-6947.
55. Lawson, D.A., et al., Prostate stem cells and prostate cancer. Cold Spring Harb Symp Quant Biol, 2005. 70: p. 187-96.
56. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10158-63.
57. Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res, 2008. 14(21): p. 6751-60.
58. Bao, S.D., et al., Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 2006. 66(16): p. 7843-7848.
59. Bruno, S., et al., CD133(+) renal progenitor cells contribute to tumor angiogenesis. American Journal of Pathology, 2006. 169(6): p. 2223-2235.
60. Zhu, L.Q., et al., Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 2009. 457(7229): p. 603-U114.
61. Yoshikawa, R., et al., Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. British Journal of Cancer, 2008. 98(10): p. 1670-1674.
62. Takahashi, H., et al., Significance of Lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol, 2011. 18(4): p. 1166-74.
63. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7.
64. Lee, C.J., J. Dosch, and D.M. Simeone, Pancreatic cancer stem cells. Journal of Clinical Oncology, 2008. 26(17): p. 2806-2812.
65. Hurt, E.M., et al., CD44(+)CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 2008. 98(4): p. 756-765.
66. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009. 9(4): p. 239-252.
67. Hurt, E.M., et al., Identification of Vitronectin as an Extrinsic Inducer of Cancer Stem Cell Differentiation and Tumor Formation. Stem Cells, 2010. 28(3): p. 390-398.
68. Armstrong, T., et al., Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clinical Cancer Research, 2004. 10(21): p. 7427-7437.
69. Wall, S.J., et al., Meeting report: Proteases, extracellular matrix, and cancer: an AACR Special Conference in Cancer Research. Cancer Res, 2003. 63(15): p. 4750-5.
70. Dasgupta, S., S. Srinidhi, and J.K. Vishwanatha, Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog, 2012. 11: p. 4.
71. Dityatev, A. and M. Schachner, Extracellular matrix molecules and synaptic plasticity. Nat Rev Neurosci, 2003. 4(6): p. 456-68.
72. Giancotti, F.G. and E. Ruoslahti, Integrin signaling. Science, 1999. 285(5430): p. 1028-32.
73. Hood, J.D. and D.A. Cheresh, Role of integrins in cell invasion and migration. Nat Rev Cancer, 2002. 2(2): p. 91-100.
74. Lee, J.W. and R. Juliano, Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Molecules and Cells, 2004. 17(2): p. 188-202.
75. Sethi, T., et al., Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Medicine, 1999. 5(6): p. 662-668.
76. Damiano, J.S., et al., Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 1999. 93(5): p. 1658-1667.
77. Uhm, J.H., et al., Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clinical Cancer Research, 1999. 5(6): p. 1587-1594.
78. Jinka, R., et al., Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers. International Journal of Cell Biology, 2012. 2012: p. 219196.
79. Aoudjit, F. and K. Vuori, Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract, 2012. 2012: p. 283181.
80. Kim, S., et al., The effect of fibronectin-coated implant on canine osseointegration. J Periodontal Implant Sci, 2011. 41: p. 242-247.
81. Weiss, R.E. and A.H. Reddi, Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci U S A, 1980. 77(4): p. 2074-8.
82. Norton, P.A. and R.O. Hynes, In vitro splicing of fibronectin pre-mRNAs. Nucleic Acids Res, 1990. 18(14): p. 4089-97.
83. Han, S., F.R. Khuri, and J. Roman, Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Res, 2006. 66(1): p. 315-23.
84. http://en.wikipedia.org/wiki.
85. Preissner, K.T. and D. Seiffert, Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thrombosis Research, 1998. 89(1): p. 1-21.
86. Habermann, B.F. and D.A. Cheresh, Vitronectin and its receptors. Current Opinion in Cell Biology, 1993. 5(5): p. 864-868.
87. Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. Journal of Biological Chemistry, 2002. 277(6): p. 4223-4231.
88. Mollenhauer, J., I. Roether, and H.F. Kern, Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro. Pancreas, 1987. 2(1): p. 14-24.
89. http://themedicalbiochemistrypage.org/extracellularmatrix.html.
90. Talbot, D., et al., Flow Cytometric Cross-Matching and Outcome One Year after Renal-Transplantation. Transplant International, 1992. 5: p. S604-S605.
91. http://www.semrock.com/flow-cytometry.aspx.
92. Butler, J.E., et al., The enzyme-linked immunosorbent assay (ELISA): a measure of antibody concentration or affinity. Immunochemistry, 1978. 15(2): p. 131-6.
93. Carlsson, H.E., B. Hurvell, and A.A. Lindberg, Enzyme-linked immunosorbent assay (ELISA) for titration of antibodies against Brucella abortus and Yersinia enterocolitica. Acta Pathol Microbiol Scand C, 1976. 84(3): p. 168-76.
94. Engvall, E., K. Jonsson, and P. Perlmann, Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta, 1971. 251(3): p. 427-34.
95. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8(9): p. 871-4.
96. Keren, D.F., Enzyme-linked immunosorbent assay for immunoglobulin G and immunoglobulin A antibodies to Shigella flexneri antigens. Infect Immun, 1979. 24(2): p. 441-8.
97. Konstadoulakis, M.M., et al., The Presence of Anticarcinoembryonic Antigen (Cea) Antibodies in the Sera of Patients with Gastrointestinal Malignancies. Journal of Clinical Immunology, 1994. 14(5): p. 310-313.
98. Mekler, V.M. and S.M. Bystryak, Application of Ortho-Phenylenediamine as a Fluorogenic Substrate in Peroxidase-Mediated Enzyme-Linked-Immunosorbent-Assay. Analytica Chimica Acta, 1992. 264(2): p. 359-363.
99. Higuchi, A., et al., Enhanced CEA production associated with aspirin in a culture of CW-2 cells on some polymeric films. Cytotechnology, 1999. 31(3): p. 233-242.
100. http://www.signosisinc.com/principle/Tumor_Marker_ELISA_Kits.
101. Coons, A.H., et al., The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody. The Journal of Immunology, 1942. 45: p. 159-170.
102. von dem Borne, A.E., et al., A simple immunofluorescence test for the detection of platelet antibodies. Br J Haematol, 1978. 39(2): p. 195-207.
103. N., S.R.P., http://www.microrao.com.
104. http://www.mgormerod.com/page123.html.
105. Welte, Y., et al., Cancer stem cells in solid tumors: elusive or illusive? Cell Communication and Signaling, 2010. 8.
106. Ieta, K., et al., Biological and genetic characteristics of tumor-initiating cells in colon cancer. Annals of Surgical Oncology, 2008. 15(2): p. 638-648.
107. Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(-) metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 2008. 118(6): p. 2111-2120.
108. Dittfeld, C., et al., CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell line HCT-116. Radiotherapy and Oncology, 2010. 94(3): p. 375-383.
109. Yang, Z.F., et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008. 47(3): p. 919-928.
110. Lee, H.H.-c., et al., Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells. Drug Design, Development and Therapy, 2013.
111. Yu, W.-c., purification, depletion, and characterization of cancer stem cells in colon cancer cells and tissues cultured under several conditions. 2011.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2013-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明