以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:41 、訪客IP:3.145.44.22
姓名 石崑良(Kun-liang Shih) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 高穿透低面電阻之氟摻雜氧化錫薄膜製備與不同霧度之氟摻雜氧化錫薄膜對染料敏化太陽電池效能的影響
(Fabrication of high transmittance and low sheet resistance fluorine-doped tin oxide thin film and effect of different hazes of fluorine-doped tin oxide on the performance of dye-sensitized solar cells)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文主要研究利用超音波噴霧法製備低電阻率、高穿透度的FTO (氟摻雜的氧化錫)薄膜及探討不同霧度FTO膜對染料敏化太陽能電池(DSSC)效率表現影響。首先我們使用超音波噴霧熱解法來鍍FTO薄膜在玻璃基材上,並控制以下變因:(1)氟和錫的莫耳比 (2)溶液濃度 (3)鍍膜溫度 (4)間歇性鍍膜 (5)雙離子摻雜效應 (6)溶劑影響 (7)攜帶氣體。將所得到的FTO膜測定電性、光性、薄膜結構與表面形貌特性,得到以下結論。
FTO薄膜電阻率隨著摻雜氟濃度從0到0.4M的增加而從1.1x10-2 Ω cm減少到3.7x10-4 Ω cm,薄膜穿透度在摻雜氟濃度0.25 M之前隨著氟濃度增加而從46 % 降到43 % (500 nm),然後隨摻雜氟濃度增加而增加。薄膜的載子濃度隨著氟濃度增加而從1.95 x1020增加到5.62 x1020 cm-3,而載子遷移率隨著氟濃度增加從3.83到29.10 cm2 V-1s-1。另一方面,由於FTO結晶經粒隨著鍍膜溫度的增加而變大,當鍍膜溫度增加從350 oC到450 oC,薄膜電阻率從4.5x10-3降低到5.8x10-4 Ωcm,而可見光穿透度則從66 % 略為到62 % (500nm),同時薄膜的霧度隨著鍍膜溫度增加而增加。載子濃度隨著鍍膜溫度增加而減少從10.13 x1020到5.931 x1020 cm-3且遷移率隨著鍍膜溫度增加而增加從1.373到21.07 cm2V-1s-1。 在雙離子摻雜探討部分,薄膜電阻率隨著鋰濃度增加從0到0.07 M稍微從4.4x10-4增加到7.8x10-4 Ωcm,可見光穿透度則從62%到67% (500nm)。薄膜因鋰離子的摻雜降低了結晶粒徑因此霧度則隨著鋰濃度增加而降低。載子濃度與鋰濃度沒有明顯變化且載子遷移率則隨著鋰濃度增加而從29.63減少到24.23 cm2 V-1s-1。在攜帶氣體的影響方面,我們發現以氮氣作為攜帶氣體所製備之FTO電阻率為用空氣所製備的薄膜高出103倍,以氧氣為攜帶氣體則為空氣102倍,以空氣為攜帶氣體所製備的FTO薄膜其載子濃度和載子遷移率最高。最後我們控制FTO的製備步驟,調控出穿透度與面電阻值相近但霧度不同的FTO薄膜,以此FTO基板製備DSSC並比較其對元件效率的影響。結果發現使用較高霧度的FTO薄膜所製備的電池有較高的光電流與轉換效率。摘要(英) In this study, it is focus on how to fabricate low resistivity and high transmittance FTO (fluorine doped tin oxide) thin films and study the effect of the haze of FTO on DSSC performance. At first, we deposit FTO thin films on the glass substrate by spray pyrolysis deposition method and control variables: (1) molar ratio of F/Sn (2) concentration of solute (3) deposition temperature (4) deposition steps (5) dual ion doping effect (6) solvent effect and (7) carrier gas. The optical, electrical, grain structural and surface morphological of FTO films are evaluated and we get some conclusions as below.
The resistivity of FTO decreases from 1.1x10-2 to 3.7x10-4 Ωcm when fluorine concentration increases from 0 to 0.4 M. The transmittance decreases from 46% to 43% (500nm) when fluorine concentration reaches to 0.25 M. The carrier concentration increases from 1.95 x1020 to 5.62 x1020 cm-3 and the mobility increases from 3.83 to 29.10 cm2 V-1s-1 with fluorine concentration increase. As to the deposition temperature, the resistivity of FTO film decreases from 4.5x10-3 to 5.8x10-4 Ωcm and the visible transmittance decreases from 66% to 62% (500nm) when deposition temperature increases from 350 oC to 450 oC. The carrier concentration decreases from 10.13 x1020 to 5.93 x1020 cm-3 and the mobility increases from 1.37 to 21.07 cm2 V-1s-1 with the increase of deposition temperature. As to the dual ion doping effect (Li+ and F-), the resistivity of FTO film slightly increases from 4.4x10-4 to 7.8x10-4 Ωcm and the transmittance and haze of FTO film increase from 62% to 67% (500nm) with the increase of Li concentration from 0 to 0.07 M. It is due to the grain size of FTO decrease when the Li+ doping increase in the film. As to the effect of carrier gas, the resistivity of FTO film using N¬2 and O2 as carrier gas has 3 orders of magnitude and 2 orders of magnitude higher, respectively, than that using air as carrier gas. The carrier concentration and the mobility of the FTO film using air as carrier gas shows the highest value. Finally, we fabricate dye-sensitized solar cell with FTO substrates having similar sheet resistances but different hazes. It is found that the performance of DSSC with FTO film having higher haze shows better photocurrent and solar cell conversion efficiency.關鍵字(中) ★ 氧化錫
★ 霧度
★ 染料敏化太陽電池關鍵字(英) ★ tin oxide
★ haze
★ dye-sensitized solar cell論文目次 TABLE OF CONTENTS
中文摘要.................................................Ⅰ
ABSTRACT…………………………………………………………….........Ⅲ
Table of Contents……………………………………………………… ...Ⅴ
List of Tables……………………………………………………………...Ⅶ
List of Figures…………………………………………………………....Ⅸ
CHAPTER 1 INTRODUCTION……………………………………….........1
1-1 Background of transparent conductive oxide thin film.1
1-2 Classification of transparent conductive oxide thin film…………...............................................2
1-3 Scattering mechanisms of charge carriers in transparent conductive oxide thin film……………………………………........4
1-4 History of TCO and Development of TCO………………………..7
1-5 Application of TCO………………………………………………......9
1-6 Literature review…………………………………………..........10
1-7 Research motivation..................................14
CHAPTER 2 EXPERIMENTAL……………………………………...........15
2-1 Instrumentation………………………………………………….......15
2-2 Experimental material……………………………………………....19
2-3 Experimental procedure………………………………………….....19
2-3.1 Clean the corning glass………………………………………..21
2-3.2 Preparation of FTO precursors……………………………….21
2-3.3 Deposition of FTO on glass substrate..............21
2-3.4 Assemblethesolarcell..............................22
CHAPTER 3 RESULTS and DISCUSSION.........................24
3-1 Effect of different molar ratios of F/Sn on optical, electrical, structural, morphological properties..........24
3-2 Effect of different concentration of solution on optical, electrical, structural, properties...............32
3-3 Effect of different deposition temperature on optical, electrical, structural, morphological properties.35
3-4 Effect of intermittent spray pyrolysis deposition on optical, electrical properties............................41
3-5 Effect of dual ion doping effect on optical, electrical, structural, morphological properties..........43
3-6 Effect of solvent effect on optical, electrical properties................................................51
3-7 Effect of carrier gas on optical, electrical, structural, morphological properties......................53
3-8 Effect of FTO films with different hazes but similar sheet resistances on solar cell performance...............59
CHAPTER 4 CONCLUSIONS...............................................62
REFERENCES................................................64
List of Tables
Table 1.1 TCO Compounds and Dopants.......................9
Table 3.1 Variation of sheet resistance as a function of fluorine concentration of F:SnO2 films....................24
Table 3.2 Figure of merit values obtained for different fluorine doping concentrations............................31
Table 3.3 The Hall measurement for the different fluorine doping concentrations.....................................31
Table 3.4 Variation of sheet resistance as a function of solution concentration of F:SnO2 films....................32
Table 3.5 The sheet resistance and resistivity as a function of deposition temperature of F:SnO2 films........35
Table 3.6 Figure of merit values obtained for different deposition temperature of F:SnO2 films....................40
Table 3.7 The Hall measurement for the different deposition temperature of F:SnO2 films...............................40
Table 3.8 The sheet resistance and resistivity for intermittent spray pyrolysis deposition of F:SnO2 films...41
Table 3.9 The sheet resistance and resistivity for dual ion doping effect of F:SnO2 films.............................43
Table 3.10 Figure of merit values obtained for dual ion doping effect of F:SnO2 films.............................50
Table 3.11 The Hall measurement for dual ion doping effect of F:SnO2 films...........................................50
Table 3.12 The sheet resistance and resistivity for solvent effect of F:SnO2 films....................................51
Table 3.13 The sheet resistance and resistivity for different carrier gas of F:SnO2 films.....................53
Table 3.14 Figure of merit values obtained for different carrier gas of F:SnO2 films...............................58
Table 3.15 The Hall measurement obtained for different carrier gas of F:SnO2 films...............................58
Table 3.16 The sheet resistance and resistivity for different hazes but similar sheet resistances of F:SnO2 films.....................................................59
Table 3.17 The solar cell performance based on FTO films with different hazes but similar sheet resistances........61
List of Figures
Fig. 2.1 Spray pyrolysis deposition flow chart............20
Fig. 2.2 Experimental framework...........................20
Fig. 3.1 Variation of sheet resistance as a function of fluorine concentration of F:SnO2 films prepared at 400oC..11
Fig. 3.2 Transmittance spectra of F:SnO2 films with different fluorine doping levels..........................12
Fig. 3.3 Comparison of transmittance and reflectance spectra of undoped and fluorine-doped (15 wt.%) SnO2 films.....................................................13
Fig. 3.4 Reflectance spectra of F:SnO2 films with different fluorine doping levels....................................13
Fig. 3.5 (a) The transmittance (b) the reflectance for different fluorine doping concentrations of F:SnO2 films..25
Fig. 3.6 XRD patterns for different fluorine doping concentrations of F:SnO2 films............................28
Fig. 3.7 SEM micrographs for different fluorine doping concentrations of F:SnO2 films............................29
Fig. 3.8 (a) The transmittance (b) the reflectance for different solution concentrations of F:SnO2 films.........33
Fig. 3.9 XRD patterns for different solution concentrations of F:SnO2 films...........................................34
Fig. 3.10 (a) The transmittance (b) the reflectance for different deposition temperature of F:SnO2 films..........36
Fig. 3.11 SEM micrographs for different deposition temperature of F:SnO2 films...............................37
Fig. 3.12 The haze for different deposition temperature of F:SnO2 films..............................................39
Fig. 3.13 XRD patterns for different deposition temperature of F:SnO2 films...........................................39
Fig. 3.14 (a) The transmittance (b) the reflectance for intermittent spray pyrolysis deposition of F:SnO2 films...42
Fig. 3.15 (a) The transmittance (b) the reflectance for dual ion doping effect of F:SnO2 films....................45
Fig. 3.16 The haze for dual ion doping effect of F:SnO2 films.....................................................46
Fig. 3.17 XRD patterns for dual ion doping effect of F:SnO2 films.....................................................47
Fig. 3.18 SEM micrographs for dual ion doping effect of F:SnO2 films..............................................48
Fig. 3.19 (a) The transmittance (b) the reflectance for solvent effect of F:SnO2 films............................52
Fig. 3.20 (a) The transmittance (b) the reflectance for different carrier gas of F:SnO2 films.....................54
Fig. 3.21 XRD patterns for different carrier gas of F:SnO2 films.....................................................56
Fig. 3.22 Powder X-ray diffraction pattern (XRD) of as-prepared SnO nano-rectangle strips. The inset shows an EDS spectrum..................................................57
Fig. 3.23 SEM micrographs for different carrier gas of F:SnO2 films..............................................57
Fig. 3.24 (a) The transmittance (b) the reflectance for different hazes but similar sheet resistances of F:SnO2 films.....................................................59
Fig. 3.25 The haze for different hazes but similar sheet resistances of F:SnO2 films...............................60參考文獻 1. R.L. Petritz, Phys. Rev. 104, 1508 (1956)
2. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)
3. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)
4. E. Shanthi, A. Banerjee, K.L. Chopra, Thin Solid Films, 88, 93 (1982)
5. E. Shanthi, A. Banerjee, V. Dutta, K.L. Chopra, J. Appl. Phys. 53, 1615 (1982)
6. E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243 (1980)
7. T. Pisarkiewicz, K. Zakrzewska, E. Leja, Thin Solid Films 174, 217 (1989)
8. J. Bruneaux, H. Cachet, M. Froment, A. Messad, Thin Solid Films 197, 129 (1991)
9. J.J. PH Elich, E.C. Boslooper, H. Haitjema, Thin Solid Films 177, 17 (1989)
10. T.L. Tansley, D.F. Neely, C.P. Foley, Thin Solid Films 117, 19 (1984)
11. T.L. Tansley, D.F. Neely, Thin Solid Films 121, 95 (1984)
12. J. Bruneaux, H. Cachet, M. Froment, A. Messad, Thin Solid Films 197, 129 (1991)
13. P.S. Kireev, Semiconductor Physics 397 (1978)
14. J.J. PH Elich, E.C. Boslooper, H. Haitjema, Thin Solid Films 177, 17 (1989)
15. K.F. Huang, T.M. Uen, Y.S. Gou, C.R. Hiang, L.C. Yang, Thin Solid Films 148, 7 (1987)
16. P.S. Kireev, Semiconductor Physics 442 (1978)
17. F. Streintz, Ann. Phys. (Leipzig) 9, 854 (1902)
18. K. Badeker, Ann. Phys. (Leipzig) 22, 749 (1907)
19. J.T. Littleton, U.S. Patent 2,118, 795 (1938)
20. H.A. McMaster, U.S. Patent 2,429, 420 (1947)
21. R.G. Gordon, MRS Bull. 25, 52 (2000)
22. M.J. Zunick, U.S. Patent 2,516,663 (1947)
23. K. Wasa, S. Hayakawa, S. Shooji, and S. Takata, Jpn. J. Appl. Phys. 10, 1732 (1971)
24. M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971)
25. T. Minami, MRS Bull. 25, 38 (2000)
26. T. Minami, Semicond. Sci. Technol. 20, S35 (2005)
27. D.H. Zhang , H.L. Ma, Appl. Phys. A 62, 487 (1996)
28. H. De Waal, F. Simonis, Thin Solid Films 77, 253 (1981)
29. E. Elangovan, K. Ramamurthi, Journal of Optoelectronics and Advanced Materials 5, 45 (2003)
30. E. Elangovan, K. Ramamurthi, Applied Surface Science 249, 183 (2005)
31. J. Bruneaux, H. Cachet, M. Froment, A. Messad, Thin Solid Films 197, 129 (1991)
32. C. Agashe, S.S. Major, J. Mater. Sci. 31, 2965 (1996)
33. C. Agashe, M.G. Takwale, V.G. Bhide, J. Appl. Phys. 70, 7382 (1991)
34. C. Agashe, D. J. Goyal, B. R. Marathe, M. G. Takwale and V. G. Bhide, Mater. Lett. 11, 363 (1991)
35. G. Mavrodiev, M. Gajdardziska, N. Novkovski, Thin Solid Films 113, 93 (1984)
36. Dengkui Miao, Qingnan Zhao, Shuo Wu, Zhendong Wang, Xingliang Zhang, Xiujian Zhao, Journal of Non-Crystalline Solids 356, 2557 (2010)
37. Chin-Ching Lin a, Mei-Ching Chiang a, Yu-Wei Chen, Thin Solid Films 518, 1241 (2009)
38. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, Mater. Lett. 61, 3030 (2007)
39. Tatsuo Fukano, Tomoyoshi Motohiro, Solar Energy Materials & Solar Cells 82, 567 (2004)
40. M.M. Bagheri-Mohagheghi, M. Shokooh-Saremi, Semicond. Sci. Technol. 19, 764 (2004)
41. B. Stjerna, E. Olsson, C.G. Granquist, J. Appl. Phys. 76, 3797 (1994)
42. P.S. Patil, R.K. Kawar, T. Seth, D.P. Amalnerkar, P.S. Chigare, Ceram. Int. 29, 725 (2003)
43. D. Paul Joseph, P. Renugambal, M. Saravanan, S. Philip Raja, C. Venkateswaran, Thin Solid Films 517, 6129 (2009)
44. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, J. Alloys Compd. 455, 440 (2008)
45. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)
46. B. Thangaraju, Thin Solid Films 402, 71 (2002)
47. T.I. Kamins, J. Appl. Phys. 42, 4357 (1971)
48. M.E. Cowher, T.O. Sedgwick, J. Electrochem. Soc. 119, 1565 (1972)
49. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)
50. Joint Committee on Powder Diffraction Standards (JCPDS), International Centre for Diffraction Data, 2003, Version 2.4, Card No. 88-0287
51. E.I. Givargizov, Oriented Crystallization on Amorphous Substrate, Plenum Press, New York, 1991 (Chapter 4)
52. Chang-Yeoul Kim, Doh-Hyung Riu, Thin Solid Films 519, 3081 (2011)
53. J. A. F. Carroll and L. H. Slack, J. Electrochem. Soc. 123, 1889 (1976)
54. WANLU WANG AND KEJUN LIAO, Thin Solid Films 195, 193 (1991)
55. Suhua Luo, Paul K. Chu, Zengfeng Di, Miao Zhang, Weili Liu, Appl. Phys. Lett. 88, 013109 (2006)
56. M. Zubair Iqbal, Fengping Wang, Rafi-ud-din, Qurat-ul-ain Javed, M. Yasir Rafique, Yan Li, Pengfei Li, Materials Letters 68, 409 (2012)
57. S.S. Pan, C. Ye, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 85, 21 (2006)指導教授 李坤穆(Kun-mu Li) 審核日期 2013-7-10 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare