博碩士論文 100223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.22.217.242
姓名 黃建銘(Jian-ming Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Influences of Arsenic/Phosphorus Swap on the Structural, Dynamical, and Electronic Properties of Lipid Bilayers and Double Stranded DNA: A Multi-Scale Computational Study)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物分子主要由六個的化學元素所組成:碳、氫、氮、氧、磷、硫。最近的研究發現在GFAJ-1細菌中,砷元素可能取代生物分子上的磷元素並維持其生命。此外,也有文獻指出含砷的有機小分子其水解半衰期時間太短而被認為無法存在於有水的環境。雖然這個議題仍存在爭議。在本篇研究中,我們利用分子動態模擬和泛函密度函數理論來研究含砷的生物分子和一般的生物分子之間在性質上的差異。
第一個部分,我們使用全原子分子動態模擬探討含砷生物膜和一般生物膜在基本膜結構和動態性質上的差異。我們的模擬顯示含砷的生物膜具有獨特的結構和動態性質。含砷的生物膜相對於一般生物膜結構較緊密、膜面積較小和排列比較整齊。含砷生物膜的結構緊密是由於脂質之間形成較強鹽橋所引起,鹽橋將含砷的脂質吸引在一起,降低脂質頭基的旋轉速度和脂質的擴散。因此,含砷生物膜和一般生物膜之間有不同的動態性質,因此也可能會出現不同的生物功能。
第二個部分,我們使用density functional theory探討由5個鹼基對組成的DNA,在砷和磷之間的轉換會如何影響構形和電子性質。研究結果顯示,M06-2X方法可得到較接近實驗結果的DNA結構,而常用的B3LYP方法則產生較大的和實驗結果的偏差。計算得到的DNA是屬於BI的構形,和實驗結果相同,而當磷轉換成砷計算得到的結構仍然是一個BI構形。含砷DNA和一般DNA雖然都擁有BI的構形,不過,結構之間仍有差異,例如:親疏水性質,DNA溝槽大小,DNA螺旋性質。有趣的是,含砷DNA具有較強的紫外線吸收強度,因此含砷DNA可能比較容易在紫外線照射下產生結構的損壞。
摘要(英) Biomolecules are composed mainly of six major chemical elements: carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is interest to investigate the properties of arsenated-lipid bilayers and arsenated-DNA to evaluate the possibility.
In the first part, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3- arsenocholine (POAC), lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC) lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.
In the second part, we study the double-stranded native and As-substituted DNA with five base pairs using density functional theory to investigate the impacts on the conformational and electronic properties upon arsenic/phosphorus interchange. The Minnesota density functional M06-2X well reproduces of the experimental structure of native DNA; while the commonly used B3LYP functional yields large deviation. The optimized structure of native DNA at M06-2X/6-31G(d,p) level is BI-form conformation, which is consistent with the experimental result. Interestingly, the optimized structure of As-DNA at M06-2X/6-31G(d,p) level also remains a BI-form conformation. The structures of native and arsenated-DNA share some common structural features; nevertheless, they have some differences such as hydrophobic core, DNA groove, and helix twist. More interestingly, the As-DNA has stronger molar absorbance than native DNA suggested that As-DNA might be damaged quickly than native DNA under UV radiation.
關鍵字(中) ★ 砷元素 關鍵字(英) ★ arsenic-loving life
★ arsenated-lipid
★ arsenated-DNA
★ arsenate-choline salt bridge
論文目次 摘要 i
Abstract ii
致謝 iv
Table of Contents v
List of Figures vi
List of Tables viii
一、Introduction 1
二、Section I - Arsenated-lipid Bilayers 4
1. Computational Methods 5
1.1. Arsenate Force Field Parameterization 5
1.2. Molecular Dynamics Simulations 7
2. Results and Discussion 9
2.1. Area per Lipid and Membrane Thickness 9
2.2. Atom Distribution 10
2.3. Order Parameters 11
2.4. Dynamics of Lipids 12
3. Conclusions and Summary 15
三、Section II - Arsenated-DNA 16
1. Computational Methods 17
2. Results and Discussion 18
2.1. Framework of DNA Structure 18
2.2. Helical Parameters 20
2.3. Glycosyl and Backbone Conformation 22
2.4. Geometries 23
2.5. Binding Energy 23
2.6. UV-Vis Spectra 24
3. Summary and Conclusion 25
References 26
參考文獻 1. Wolfe-Simon, F.; Blum, S.J.; Kulp, T.R.; Gordon, G.W.; Hoeft, S.E.; Pett-Ridge, J.; Stolz, J.F.; Webb, S.M.; Weber, P.K.; Davies, P.C.; et al. A bacterium that can grow by using arsenic instead of phosphorus. Science 2011, 332, 1163–1166.
2. Fekry, M.I.; Tipton, P.A.; Gates, K.S. Kinetic consequences of replacing the internucleotide phosphorus atoms in DNA with arsenic. ACS Chem. Biol. 2011, 6, 127–130.
3. Wang, J.; Gu, J.; Leszczynski, J. Could hydrolysis of arsenic substituted DNA be prevented? Protection arises from stacking interactions. Chem. Commun. (Camb) 2012, 48, 3626–3628.
4. Reaves, M.L.; Sinha, S.; Rabinowitz, J.D.; Kruglyak, L.; Redfield, R.J. Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 2012, 337, 470–473.
5. Erb, T.J.; Kiefer, P.; Hattendorf, B.; Günther, D.; Vorholt, J.A. GFAJ-1 Is an Arsenate-Resistant, Phosphate-Dependent Organism. Science 2012, 337, 467–470.
6. Elias, M.; Wellner, A.; Goldin-Azulay, K.; Chabriere, E.; Vorholt, J.A.; Erb, T.J.; Tawfik, D.S. The molecular basis of phosphate discrimination in arsenate-rich environments. Nature 2012, 491, 134–137.
7. Denning, E.J.; Mackerell, A.D., Jr. Impact of arsenic/phosphorus substitution on the intrinsic conformational properties of the phosphodiester backbone of DNA investigated using ab initio quantum mechanical calculations. J. Am. Chem. Soc. 2011, 133, 5770–5772.
8. Xu, Y.; Ma, B.; Nussinov, R. Structural and functional consequences of phosphate-arsenate substitutions in selected nucleotides: DNA, RNA, and ATP. J. Phys. Chem. B 2012, 116, 4801–4811.
9. Rosen, B.P.; Ajees, A.A.; McDermott, T.R. Life and death with arsenic. Arsenic life: An analysis of the recent report “A bacterium that can grow by using arsenic instead of phosphorus”. Bioessays 2011, 33, 350–357.
10. Mackerell, A.D.; Wiorkiewiczkuczera, J.; Karplus, M. An all-atom empirical energy function for the simulation of nucleic-acids. J. Am. Chem. Soc. 1995, 117, 11946–11975.
11. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford, CT, USA, 2009.
12. Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614.
13. Simon, S.L.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024.
14. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865.
15. Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D.; Pastor, R.W. Update of the CHARMM All-Atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843.
16. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.
17. Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.
18. Feller, S.E.; Zhang, Y.; Pastor, R.W.; Brooks, B.R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613–4621.
19. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald—An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092.
20. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys. 1977, 23, 327–341.
21. Tsai, H.H.; Lai, W.X.; Lin, H.D.; Lee, J.B.; Juang, W.F.; Tseng, W.H. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: Possible role in stalk formation during membrane fusion. Biochim. Biophys. Acta 2012, 1818, 2742–2755.
22. Tsai, H.H.; Lee, J.B.; Tseng, S.S.; Pan, X.A.; Shih, Y.C. Folding and membrane insertion of amyloid-beta (25–35) peptide and its mutants: Implications for aggregation and neurotoxicity. Proteins Struct. Funct. Bioinform. 2010, 78, 1909–1925.
23. Tsai, H.H.; Reches, M.; Tsai, C.J.; Gunasekaran, K.; Gazit, E.; Nussinov, R. Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proc. Natl. Acad. Sci. USA 2005, 102, 8174–8179.
24. Tsai, C.W.; Hsu, N.Y.; Wang, C.H.; Lu, C.Y.; Chang, Y.; Tsai, H.H.; Ruaan, R.C. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J. Mol. Biol. 2009, 392, 837–854.
25. Pabst, G.; Rappolt, M.; Amenitsch, H.; Laggner, P. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality X-ray data. Phys. Rev. E 2000, 62, 4000–4009.
26. Smaby, J.M.; Momsen, M.M.; Brockman, H.L.; Brown, R.E. Phosphatidylcholine acyl unsaturation modulates the decrease in interfacial elasticity induced by cholesterol. Biophys. J. 1997, 73,
1492–1505.
27. Kučerka, N.; Tristram-Nagle, S.; Nagle, J. Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains. J. Membr. Biol. 2006, 208, 193–202.
28. Hyslop, P.A.; Morel, B.; Sauerheber, R.D. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Biochemistry 1990, 29, 1025–1038.
29. Poger, D.; Mark, A.E. On the validation of molecular dynamics simulations of saturated and cis-monounsaturated phosphatidylcholine lipid bilayers: A comparison with experiment. J. Chem. Theory Comput. 2009, 6, 325–336.
30. Poger, D.; Mark, A.E. Lipid bilayers: The effect of force field on ordering and dynamics. J. Chem. Theory Comput. 2012, 8, 4807–4817.
31. Seelig, J.; Waespe-Sarcevic, N. Molecular order in cis and trans unsaturated phospholipid bilayers. Biochemistry 1978, 17, 3310–3315.
32. Williams, G.; Watts, D.C. Non-Symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85.
33. Williams, G.; Watts, D.C.; Dev, S.B.; North, A.M. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1971, 67, 1323–1335.
34. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford CT, 2009.
35. Drew, H. R.; Wing, R. M.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. Proc Natl Acad Sci U S A 1981, 78, 2179.
36. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
37. Holbrook, S. R.; Dickerson, R. E.; Kim, S.-H. Acta Crystallographica Section B 1985, 41, 255.
38. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
39. Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379.
40. Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2008, 120, 215.
41. Zhao, Y.; Truhlar, D. G. ACCOUNTS OF CHEMICAL RESEARCH 2008, 41, 157.
42. Lavery, R.; Moakher, M.; Maddocks, J. H.; Petkeviciute, D.; Zakrzewska, K. Nucleic Acids Res 2009, 37, 5917.
43. Neidle, S.; Oxford University Press: Oxford, U.K.. 1999.
44. Neidle, S.; Elsevier Inc.: Amsterdam, 208.
45. Eur. J. Biochem. 1983, 131, 9.
46. Sinha, R. P.; Häder, D.-P. Photochemical & Photobiological Sciences 2002, 1, 225.
指導教授 蔡惠旭(Hui-hsu Tsai) 審核日期 2013-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明