博碩士論文 993204066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:52.14.110.171
姓名 蕭瑞祥(Jui-hsiang Hsiao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 於不同彈性係數的生醫材料上體外培植造血幹細胞
(Ex Vivo Expansion of Hematopoietic Stem Cells Cultured on Biomaterial Having Different Elasticity)
相關論文
★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞★ 可見光對羊水間葉幹細胞成骨分化之影響
★ 可見光調控神經細胞之基因表現及突觸生長★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究
★ 人類表皮成長因子的結構穩定性及生物活性測定★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響
★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究
★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究
★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細胞培植基材表面的彈性在幹細胞的分化上扮演著重要的角色,不論是培養基材的軟硬程度或是彈性係數(物理特性)在影響幹細胞的命運上都是具有決定性的因素。同樣的,在二維的平面上培植幹細胞,培植基材表面的化學特性與生物特性也都會對幹細胞產生影響。在本研究中發現,在表面不具有任何生物特性改質的polyvinylalcohol-co-itaconic acid (PVA-IA) 薄膜上體外培植造血幹細胞,於表面基材彈性係數30.4kPa 的條件下最適合造血幹細胞體外培養。但細胞培植基材(PVA-IA) 薄膜在經過改質表面具有細胞外基質或是寡肽之後 (生物特性訊號),實驗得到的趨勢以及結果卻大不相同。造血幹細胞培養於彈性係數12.2kPa介在中間值的培養基材上有著最高的體外增質倍率。此一研究結果顯示: 不論是物理特性還是生物特性都將對造血幹細胞體外增質造成影響,而且生物特性在二維平面的體外培植上似乎扮演著較重要的角色。除此之外,此一研究結果也顯示: 在不同的生物特性及物理特性條件下,幹細胞的是否分化及其分化的途徑也會有所差異。
摘要(英) Matrix elasticity play an important role in stem cell lineage specification in differentiating either stiffness or elasticity (physical property) of the culture substrates is one of the selective causes for affects the fate determination of stem cell. Similarly, the chemical and biological properties of matrix can also affect the stem cell of various functions on 2D cultivate surface. In the present investigation, it was found that the stiffer surface with elasticity of 30.4 kPa or 16.5 MPa was optimal for the ex vivo expansion of HSCs without any further biological modification on polyvinylalcohol-co-itaconic acid (PVA-IA) films. On the contrary, it came up with different results after grafting the extracellular matrix or oligopeptide contributing with HSC binding domain. The intermediate stiffness surface with elasticity of 12.2 kPa or 1.417 MPa had the highest expansion fold of HSCs. This result indicated that both physical and biological properties would affect the ex vivo expansion of HSCs. The biological cues seem to play a more significant role during ex vivo expansion of HSCs on the 2D cultivation. Further findings suggested that the effect of optimal biological and physical parameters required for the different lineages of various stem cells.
關鍵字(中) ★ 造血幹細胞
★ 彈性
★ 細胞外基質
★ 臍帶血
關鍵字(英) ★ Hematopoietic stem cell
★ Elasticity
★ Extracellular Matrix
★ Umbillical Cord Blood
論文目次 Index of Content
Introduction...................................1
1.1 Stem cell................................. 1
1.2 Stem cell therapy......................... 2
.1 Hematopoietic Stem Cell.......................................... 3
1-3.2 HSC micro niche: Bone marrow environment................................... 4
1-4 Cytokines and cellular mechanisms of hematopoiesis................................. 5
1-5 Purification methods of HSCs.......................................... 9
1-5-1 Fluorescence-activated cell sorting (FACS)....................................... 10
1-5-2 Magnetic-activated cell sorting (MACS) ............................................. 12
1-6 Extracellular matrix (ECM) and nano-segment...................................... 15
1-6-1 Type and classification of artificial ECMs......................................... 16
1-6-1.1 Collagen............................. 19
1-6-1.2 Fibronectin.......................... 19
1-6-1.3 Laminin ............................................. 20
1-6-1.4 Vitronectin.......................... 20
1-6-1.5 Matrigel............................. 21
1-6-2 The effect of extracellular matrix (ECM) to stem cells........................................ 22
1-7 Physical cues affect ex vivo expansion ............................................. 23
1-7.1Physical cue affects ex vivo expansion of stem cells........................................ 25
1-8Ex vivoexpansion of hematopoietic stem cells........................................ 27
1-8.1Culture medium of ex vivoexpansion of HSCs......................................... 30
1-9Conventional synthetic and natural polymeric materials.................................... 30
1-9-1 Effect of surface chemistry on the ex vivo expansionof HSC.......................................... 35
1-9-2Polymeric materials modified with biological cues ............................................. 36
1-10 HSC analysis ............................................. 44
1-10-1Flow cytometry analysis..................................... 44
1-10-2 Colony Forming cell (CFC) assay........................................ 47
Method and Material...........................49
2-1 Material ................................ 49
2-2 PVA-IA film Preparation.................................. 49
2-3 Preparation of PVA-IA coating dish grafted with ECM and oligopeptide ............... 50
2-4Elasticity measurement of PVA-IA ............................................. 51
2-4.1 Dynamic mechanical analysis..................................... 51
................................................................................................................................ 512-4.2 Atomic Force Microscope................................... 52
2-5 Thickness measurement via scanning electric microscope ............................................. 54
2-6 XPS analysis of dish surface ............................................. 54
2-7 Material for ex vivo expansion of hematopoietic stem cells........................................ 54
2-8 Buffer Solution.......................... 55
2-9 Sterilization of Modified Materials.................................... 55
2-10 Purificationof hematopoietic stem cells ............................................. 56
2-10-1 Magnetic labeling and magnetic separationof CD34+
cells ....................................... 57
2-11 Ex vivo Expansion of HSCs on PVA-IA coatedDishes (2D Culture)..................................... 60
2-12 HSCs Analysis........................... 61
2-12.1 Flow cytometry analysis..................................... 61
2-12.2 Colony Forming cell (CFC) assay........................................ 61
2-12.3 Immunofluorescence ............................................. 62
Result and Discussion ..............................................64
3-1 Preparation of PVA-IA with different stiffness ............................................. 64
3-2 The scale effect of PVA-IAfilm....................................... 64
3-3 The thickness of the PVA-IAcoated on TCPS......................................... 68
3-4 The elasticity of the PVA-IAgel........................................ 71
3-5 The XPS measurement of the PVA-IA films........................................ 78
3-6 Ex vivo expansion of HSC from UCB on PVA-IA films having different stiffness. 82
3-7 Colony forming assay of HSC from UCB on variety stiffness dishes............... 87
3-8 Ex vivo expansion of HSC from UCB on PVA-IA films having biological cues and
different stiffness ............................................. 92
3-9 Colony forming assay of HSC from UCB on variety stiffness dishes with biological
cues......................................... 96
Conclusion ..................................100
Reference….……,,……………………………….....…………………………………103
參考文獻 [1] B. E. Tuch, "Stem cells--a clinical update," Aust Fam Physician, vol. 35, pp.719-21, Sep 2006.
[2] A. J. Becker, C. E. Mc, and J. E. Till, "Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells," Nature, vol. 197, pp. 452-4, Feb 2 1963.
[3] O. Lindvall and Z. Kokaia,"Stem cells for the treatment of neurological disorders," Nature, vol. 441, pp. 1094-6, Jun 29 2006.
[4] I. L. Weissman, "Stem cells: units of development, units of regeneration, and units in evolution," Cell, vol. 100, pp. 157-68, Jan 7 2000.
[5] I. Singec, R. Jandial, A. Crain, G. Nikkhah, and E. Y. Snyder, "The leading edge of stem cell therapeutics," Annu Rev Med, vol. 58, pp. 313-28, 2007.
[6] Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA,et al. Mesenchymal and haematopoietic stem cells form a unique bone marrowniche. Nature 2010;466:829–34.
[7] Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, et al. Detection offunctional haematopoietic stem cell niche using real-time imaging. Nature2009;457:97–101.
[8] Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of thehaematopoietic stem cell niche and control of the niche size. Nature 2003;425:836–41.
[9] Higuchi A, Yang ST, Li PT, Chang Y, Tsai EM, Chen YH, et al. Polymeric materialsfor ex vivo expansion of hematopoietic progenitor and stem cells. Polym Rev2009;49:181–200.
[10] Remberger M, Mattsson J, Olsson R, Ringden O. Second allogeneichematopoietic stem cell transplantation: a treatment for graft failure. ClinTransplant 2011;25:E68–76.
[11] Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med2006;354:1813–26. Ma K, Chan CK, Liao S, Hwang WY, Feng Q,Ramakrishna
[12] S .Electrospunnanofiber scaffolds for rapid and rich capture of bone marrow-derivedhematopoietic stem cells. Biomaterials 2008;29:2096–103.
[13]Doran MR, Markway BD, Aird IA, Rowlands AS, George PA, Nielsen LK, et al.Surface-bound stem cell factor and the promotion of hematopoietic cellexpansion. Biomaterials 2009;30:4047–52.
[14] Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med2006;354:1813–26.
[15] Chua KN, Chai C, Lee PC, Ramakrishna S, Leong KW, Mao HQ.
Functionalnanofiber scaffolds with different spacers modulate adhesion andexpansion ofcryopreserved umbilical cord blood hematopoietic stem/progenitor cells. ExpHematol 2007;35:771–81.
[16] Yamamoto S, Ikeda H, Toyama D, Hayashi M, Akiyama K, Suzuki M, et al.Quality of long-term cryopreserved umbilical cord blood units forhematopoietic cell transplantation. Int J Hematol 2011;93:99–105.
[17] Chao NJ, Emerson SG, Weinberg KI. Stem cell transplantation (cord bloodtransplants). Hematology (Am Soc Hematol Educ Program) 2004:354–71.
[18] Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH. ransplantationof umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev2011;7:181–94.
[19] Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, et al.Outcomes after transplantation of cord blood or bone marrow from unrelateddonors in adults with leukemia. N Engl J Med 2004;351:2265–75.
[20] Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al.Transplants of umbilical-cord blood or bone marrow from unrelated donors inadults with acute leukemia. N Engl J Med 2004;351:2276–85.
[21] Kishore V, Eliason JF, Matthew HW. Covalently immobilizedglycosaminoglycans enhance megakaryocyte progenitor expansion andplatelet release. J Biomed Mater Res A 2011;96:682–92.
[22] www.saypeople.com
[23] R. Schofield, "The relationship between the spleen colony-forming cell and the haemopoietic stem cell," Blood Cells, vol. 4, pp. 7-25, 1978.
[24] N. Di Maggio, E. Piccinini, M. Jaworski, A. Trumpp, D. J. Wendt, and I. Martin, "Toward modeling the bone marrow niche using scaffold-based 3D culture systems," Biomaterials, vol. 32, pp. 321-329, Jan 2011.
[25] L. Y. Chen, Y. Chang, J. S. Shiao, Q. D. Ling, Y. H. Chen, D. C. Chen, S. T. Hsu, H. H.Lee, and A. Higuchi, "Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood," Acta Biomaterialia, vol. 8, pp.1749-58, May 2012.
[26] Y. W. Choi, H. H. Park, and D. J. Oh, "Ex vivo Expansion of Hematopoietic Cells from CD34(+) Cord Blood Cells in Various Culture Conditions," Biotechnology and Bioprocess Engineering, vol. 15, pp. 157-166, Jan-Feb 2010.
[27] Ema, H. Takano, K. Sudo, and H. Nakauchi, "In vitro self-renewal division of hematopoietic stem cells," Journal of Experimental Medicine, vol. 192, pp. 1281-1288, Nov 6 2000.
[28] N. Fox, G. Priestley, T. Papayannopoulou, and K. Kaushansky, "Thrombopoietin expands hematopoietic stem cells after transplantation," Journal of Clinical Investigation, vol. 110, pp. 389-394, Aug 2002.
[29] J. Audet, C. L. Miller, S. Rose-John, J. M. Piret, and C. J. Eaves, "Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 1757-1762, Feb 13 2001.
[30] V. Rocha, J. Cornish, E. L. Sievers, A. Filipovich, F. Locatelli, C. Peters, M. Remberger, G. Michel, W. Arcese, S. Dallorso, K. Tiedemann, A. Busca, K. W. Chan, S. Kato, J. Ortega, M. Vowels, A. Zander, G. Souillet, A. Oakill, A. Woolfrey, A. L. Pay, A. Green, F. Garnier, I. Ionescu, P. Wernet, G. Sirchia, P. Rubinstein, S. Chevret, and E. Gluckman, "Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia," Blood, vol. 97, pp. 2962-2971, May 15 2001.
[31] F. Frassoni, M. Podesta, R. Maccario, G Giorgiani, G. Rossi, M. Zecca, A. acigalupo, G. Piaggio, and F. Locatelli, "Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation," Blood, vol. 102, pp. 1138-1141, Aug 1 2003.
[32] M. J. Laughlin, M. Eapen, P. Rubinstein, J. E. Wagner, M. J. Zhang, R. E. Champlin, C. Stevens, J. N. Barker, R. P. Gale, H. M. Lazarus, D. I. Marks, J. J. van Rood, A. Scaradavou, and M M. Horowitz, "Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia," New England Journal of Medicine, vol. 351, pp.2265-2275, Nov 25 2004.
[33] V. Rocha, M. Labopin, G. Sanz, W. Arcese, R. Schwerdtfeger, A. Bosi, N. Jacobsen, T. Ruutu, M. de Lima, J. Finke, F. Frassoni, E. Gluckman, A. L. W. P. Euro, and M. T. G. E. Net, "Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia," New England Journal of Medicine, vol. 351, pp. 2276-2285, Nov 25 2004.
[34] M. A. S. Moore, "Cytokine and chemokine networks influencing stem cell proliferation, differentiation, and marrow homing," J Cell Biochem, pp. 29-38, 2002.
[35] P. Feugier, D. Y. Jo, J. H. Shieh, K. L. MacKenzie, S. Rafii, R. G. Crystal, and M. A.S. Moore, "Ex vivo expansion of stem and progenitor cells in co-culture of mobilized peripheral blood CD34(+) cells on human endothelium transfected with adenovectors expressing thrombopoietin, c-kit ligand, and Flt-3 ligand," Journal of Hematotherapy & Stem Cell Research, vol. 11, pp. 127-138, Feb 2002.
[36] Z. Ivanovic, P. Dello Sbarba, F. Trimoreau, J. L. Faucher, and V. Praloran, "Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent," Transfusion, vol. 40, pp. 1482-1488, Dec 2000.
[37] G. Migliaccio, A. R. Migliaccio, and J. W. Adamson, "In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived cultures," Blood, vol. 72, pp. 248-56, Jul 1988.
[38] K. Li, M. Yang, A. C. Lam, F. W. Yau, and P. M. P. Yuen, "Effects of flt-3 ligand in combination with TPO on the expansion of megakaryocytic progenitors," Cell Transplantation, vol. 9, pp. 125-131, Jan-Feb 2000.
[39] L. Lazzari, S. Lucchi, P. Rebulla, L. Porretti, G. Puglisi, L. Lecchi, and G. Sirchia, "Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system," British Journal of Haematology, vol. 112, pp. 397-404, Feb 2001.
[40] P. H. Shaw, M. Olszewski, and M. Kletzel, "Expansion of megakaryocyte precursors and stem cells from umbilical cord blood CD34(+) cells in collagen and liquid culture media," Journal of Hematotherapy & Stem Cell Research, vol. 10, pp. 391-403, Jun 2001.
[41] R. J. Su, X. B. Zhang, K. Li, M. Yang, C. K. Li, T. F. Fok, A. E. James, H. Pong, and P. M. P. Yuen, "Platelet-derived growth factor promotes ex vivo expansion of CD34(+) cells from human cord blood and enhances long-term culture-initiating cells, non-obese diabetic/severe combined immunodeficient repopulating cells and formation of adherent cells," British Journal of Haematology, vol. 117, pp. 735-746, Jun 2002.
[42] Yvette van Hensbergena, Laurus F. Schippera. Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model Experimental . Hematology 34 (2006) 943–950
[43] S. M. Watt, J.Y.H. Chan, “CD164- a novel sialomucin on CD34+ cells”, Leuk.Lymphoma (2000) 37, 1-25.
[44] F. Keil, F. Elahi, H.T. Greinix, G. Fritsch, N. Louda, A.L. Petzer, E. Prinz, T. Wagner, P. Kalhs, K. Lechner, K. Geissler, “Ex vivo expansion of long-term culture initiating marrow cells by IL-10, SCF, and IL-3”, Transfusion (2002) 42,581-587.
[45] T. Wagner, G. Fritsch, R. Thalhammer, P. Hocker, G. Lanzer, K. Lechner, and K. Geissler, "IL-10 increases the number of CFU-GM generated by ex vivo expansion of unmanipulated human MNCs and selected CD34+ cells," Transfusion, vol. 41, pp. 659-66, May 2001.
[46] F. N. Karanu, B. Murdoch, L. Gallacher, D. M. Wu, M. Koremoto, S. Sakano, and M. Bhatia, "The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells," Journal of Experimental Medicine, vol. 192, pp. 1365-72, Nov 6 2000.
[47] M. Masuya, N. Katayama, N. Hoshino, H. Nishikawa, S. Sakano, H. Araki,H. Mitani, H. Suzuki, H. Miyashita, K. Kobayashi, K. Nishii, N. Minami, H.Shiku, “The soluble Notch ligand, Jagged-1, inhibits proliferation of CD34+macrophage progenitors”, Int. J. Hematol. (2002) 75, 269-276.
[48] S. M. Watt and J. Y. Chan, "CD164--a novel sialomucin on CD34+ cells," Leuk ymphoma, vol. 37, pp. 1-25, Mar 2000.
[49] M.A. Dao, J.A. Nolta, “CD34: to select or not to select? That is the question”,Leukemia (2000) 14, 773-776.
[50] E. A. de Wynter, A. J. B. Emmerson, and N. G. Testa, "Properties of peripheral blood and cord blood stem cells," Best Practice & Research Clinical Haematology, vol. 12, pp. 1-17, Mar-Jun 1999.
[51] H. J. Sutherland, C. J. Eaves, A. C. Eaves, W. Dragowska, and P. M. Lansdorp, "Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro," Blood, vol. 74, pp. 1563-70, Oct 1989.
[52] "BEACH overview," Aust Fam Physician, vol. 35, pp. 153-4, Mar 2006.
[53] H. Mayani and P. M. Lansdorp, "Thy-1 Expression Is Linked to Functional-Properties of Primitive Hematopoietic Progenitor Cells from Human Umbilical-Cord Blood," Blood, vol. 83, pp. 2410-2417, May 1 1994.
[54] C. M. Baum, I. L. Weissman, A. S. Tsukamoto, A. M. Buckle, and B. Peault, "Isolation of a Candidate Human Hematopoietic Stem-Cell Population," Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 2804-2808, Apr 1 1992.
[55] E. A. de Wynter, C. Hart, L. H. Coutinho, D. Gagen, J. Chang, D. Buck, and N. G. Testa, "Analysis of human haemopoietic cells isolated with the novel AC133 monoclonal antibody.," Experimental Hematology, vol. 26, pp. 739-739, Aug 1998.
[56] H. J. Sutherland, P. M. Lansdorp, D. H. Henkelman, A. C. Eaves, and C. J. Eaves, "Functional-Characterization of Individual Human Hematopoietic Stem-Cells Cultured at Limiting Dilution on Supportive Marrow Stromal Layers," Proceedings of the National Academy of Sciences of the United States of America, vol. 87, pp. 3584-3588, May 1990.
[57] C. Udomsakdi, C. J. Eaves, H. J. Sutherland, and P. M. Lansdorp, "Separation of Functionally Distinct Subpopulations of Primitive Human Hematopoietic-Cells Using Rhodamine-123," Experimental Hematology, vol. 19, pp. 338-342, Jun 1991.
[58] S. Siena, M. Bregni, B. Brando, N. Belli, F. Ravagnani, L. Gandola, A. C. Stern, P. M. Lansdorp, G. Bonadonna, and A. M. Gianni, "Flow cytometry for clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients," Blood, vol. 77, pp. 400-9, Jan 15 1991.
[59] J. Seita and I. L. Weissman, "Hematopoietic stem cell: self-renewal versus differentiation," Wiley Interdiscip Rev Syst Biol Med, vol. 2, pp. 640-53, Nov-Dec 2010.
[60] A. A. Ross, B. W. Cooper, H. M. Lazarus, W. Mackay, T. J. Moss, N. Ciobanu, M. S. Tallman, M. J. Kennedy, N. E. Davidson, D. Sweet, C. Winter, L. Akard, J. Jansen, E. Copelan, R. C. Meagher, R. H. Herzig, T. R. Klumpp, D. G. Kahn, and N. E. Warner, "Detection and Viability of Tumor-Cells in Peripheral-Blood Stem-Cell Collections from Breast-Cancer Patients Using Immunocytochemical and Clonogenic-Assay Techniques," Blood, vol. 82, pp. 2605-2610, Nov 1 1993.
[61] A. A. Ross, M. Loudovaris, B. Hazelton, C. H. Weaver, L. Schwartzberg, and J. G. Bender, "Immunocytochemical analysis of tumor cells in pre- and post-culture peripheral blood progenitor cell collections from breast cancer patients," Experimental Hematology, vol. 23, pp. 1478-1483, Dec 1995.
[62] W. Brugger, K. J. Bross, M. Glatt, F. Weber, R. Mertelsmann, and L. Kanz, "Mobilization of Tumor-Cells and Hematopoietic Progenitor Cells into Peripheral-Blood of Patients with Solid Tumors," Blood, vol. 83, pp. 636-640, Feb 1 1994.
[63] D. J. Richel, H. E. Johnsen, J. Canon, T. Guillaume, M. R. Schaafsma, C. Schenkeveld, S. W. Hansen, I. McNiece, A. J. Gringeri, R. Briddell, C. Ewen, R. Davies, J. Freeman, S. Miltenyi, and M. Symann, "Highly purified CD34(+) cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients," Bone Marrow Transplant, vol. 25, pp. 243-249, Feb 2000.
[64] G. A. Martinhenao, J. Inglesesteve, J. A. Cancelas, C. Azqueta, and J. Garcia, "Isolation of Cd34+ Hematopoietic Progenitor Cells in Chronic Myeloid-Leukemia by High-Gradient Magnetic Cell Sorting (Hgmcs)," Experimental Hematology, vol. 23, pp. 917-917, Aug 1995.
[65] E. J. Shpall, C. F. LeMaistre, K. Holland, E. Ball, R. B. Jones, R. Saral, C. Jacobs, S. Heimfeld, R. Berenson, and R. Champlin, "A prospective randomized trial of buffy coat versus CD34-selected autologous bone marrow support in high-risk breast cancer patients receiving high-dose chemotherapy," Blood, vol. 90, pp. 4313-4320, Dec 1 1997.
[66] M. J. Styler, D. L. Topolsky, P. A. Crilley, V. Covalesky, R. Bryan, S. Bulova, and I. Brodsky, "Transient High-Grade Heart-Block Following Autologous Bone-Marrow Infusion," Bone Marrow Transplant, vol. 10, pp. 435-438, Nov 1992.
[67] D. F. Stroncek, S. K. Fautsch, L. C. Lasky, D. D. Hurd, N. K. C. Ramsay, and J. Mccullough, "Adverse Reactions in Patients Transfused with Cryopreserved Marrow," Transfusion, vol. 31, pp. 521-526, Jul-Aug 1991.
[68] W. I. B. [62] R.J. Berenson, D. Kalamasz et al., "Avidin–biotin immunoadsorption: a technique to purify cells and its potential applications, In: Gale RP, Champlin R (eds)," Progress in Bone Marrow Transplantation. Liss: New York, 1989.
[69] M. J. Fulwyler, "Electronic separation of biological cells by volume," Science, vol. 150, pp. 910-1, Nov 12 1965.
[70] "High Frequency Recording with Electrostatically Deflected Ink Jets," 1965.
[71] M. A. Van Dilla, M. J. Fulwyler, and I. U. Boone, "Volume distribution and separation of normal human leucocytes," Proc Soc Exp Biol Med, vol. 125, pp. 367-70, Jun 1967.
[72] W. A. Bonner, H. R. Hulett, R. G. Sweet, and L. A. Herzenberg, "Fluorescence activated cell sorting," Rev Sci Instrum, vol. 43, pp. 404-9, Mar 1972.
[73] K. W. Johnson, M. Dooner, and P. J. Quesenberry, "Fluorescence activated cell sorting: a window on the stem cell," Curr Pharm Biotechnol, vol. 8, pp. 133-9, Jun 2007.
[74] M. Assenmacher, R. Manz, S. Miltenyi, A. Scheffold, and A. Radbruch, "Fluorescence-activated cytometry cell sorting based on immunological recognition," Clin Biochem, vol. 28, pp. 39-40, Feb 1995.
[75] M. R. Loken, Immunofluorescence Techniques in Flow Cytometry and Sorting: Wiley, 1990.
[76] S. T. Yang, "Separation and ex vivo expansion of hematopoietic stem cells from human blood by membrane filtration and magnetic associated sorting method," NCU Master thesis, 2009.
[77] K. Kato and A. Radbruch, "Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting," Cytometry, vol. 14, pp. 384-92, 1993.
[78] S. Miltenyi, W. Muller, W. Weichel, and A. Radbruch, "High gradient magnetic cell separation with MACS," Cytometry, vol. 11, pp. 231-8, 1990.
[79] E. A. de Wynter, L. H. Coutinho, X. Pei, J. C. Marsh, J. Hows, T. Luft, and N. G. Testa, "Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems," Stem Cells, vol. 13, pp. 524-32, Sep 1995.
[80] I. McNiece, R. Briddell, G. Stoney, B. Kern, K. Zilm, D. Recktenwald, and S. Miltenyi, "Large-scale isolation of CD34+ cells using the Amgen Cell Selection Device results in high levels of purity and recovery," Journal of Hematotherapy, vol. 6, pp. 5-11, Feb 1997.
[81] Frontiers in tissue engineering, 1998.
[82] F. Rosso, A. Giordano, M. Barbarisi, and A. Barbarisi, "From cell-ECM interactions to tissue engineering," J Cell Physiol, vol. 199, pp. 174-180, May 2004.
[83] R. Langer and J. P. Vacanti, "Tissue Engineering," Science, vol. 260, pp. 920-926, May 14 1993.
[84] R. Barbucci, Integrated Biomaterials Science: Springer, 2002.
[85] A. J. Putnam and D. J. Mooney, "Tissue engineering using synthetic extracellular matrices," Nature Medicine, vol. 2, pp. 824-826, Jul 1996.
[86] W. P. Daley, S. B. Peters, and M. Larsen, "Extracellular matrix dynamics in development and regenerative medicine," Journal of Cell Science, vol. 121, pp. 255-264, Feb 1 2008.
[87] T. Rozario and D. W. DeSimone, "The extracellular matrix in development and morphogenesis: A dynamic view," Dev Biol, vol. 341, pp. 126-140, May 1 2010.
[88] F. Rosso, G. Marino, A. Giordano, M. Barbarisi, D. Parmeggiani, and A. Barbarisi, "Smart materials as scaffolds for tissue engineering," J Cell Physiol, vol. 203, pp. 465-470, Jun 2005.
[89] L. Moroni, J. R. De Wijn, and C. A. Van Blitterswijk, "Integrating novel technologies to fabricate smart scaffolds," Journal of Biomaterials Science-Polymer Edition, vol. 19, pp. 543-572, 2008.
[90] J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, and R. L. Reis, "Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving rends," Journal f the Royal Society Interface, vol. 4, pp. 999-1030, Dec 22 2007.
[91] C. H. Lee, A. Singla, and Y. Lee, "Biomedical applications of collagen," International Journal of Pharmaceutics, vol. 221, pp. 1-22, Jun 19 2001.
[92] C. C. Tate, D. A. Shear, M. C. Tate, D. R. Archer, D. G. Stein, and M. C. LaPlaca, "Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain," J Tissue Eng Regen Med, vol. 3, pp. 208-17, Mar 2009.
[93] M. C. Tate, D. A. Shear, S. W. Hoffman, D. G. Stein, D. R. Archer, and M. C. LaPlaca, "Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain," Cell Transplantation, vol. 11, pp. 283-95, 2002.
[94] T. Sato, K. Arai, S. Ishiharajima, and G. Asano, "Role of glycosaminoglycan and fibronectin in endothelial cell growth," Exp Mol Pathol, vol. 47, pp. 202-10, Oct 1987.
[95] A. Gutman and A. R. Kornblihtt, "Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA," Proc Natl Acad Sci U S A, vol. 84, pp. 7179-82, Oct 1987.
[96] E. Ruoslahti and M. D. Pierschbacher, "New perspectives in cell adhesion: RGD and integrins," Science, vol. 238, pp. 491-7, Oct 23 1987.
[97] K. Bhadriraju and L. K. Hansen, "Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins," Biomaterials, vol. 21, pp. 267-72, Feb 2000.
[98] D. Mooney, L. Hansen, J. Vacanti, R. Langer, S. Farmer, and D. Ingber, "Switching from differentiation to growth in hepatocytes: control by extracellular matrix," J Cell Physiol, vol. 151, pp. 497-505, Jun 1992.
[99] L. K. Hansen, D. J. Mooney, J. P. Vacanti, and D. E. Ingber, "Integrin Binding and Cell Spreading on Extracellular-Matrix Act at Different Points in the Cell-Cycle to Promote Hepatocyte Growth," Mol Biol Cell, vol. 5, pp. 967-975, Sep 1994.
[100] M. Rosemblatt, M. H. Vuillet-Gaugler, C. Leroy, and L. Coulombel, "Coexpression of two fibronectin receptors, VLA-4 and VLA-5, by immature human erythroblastic precursor cells," Journal of Clinical Investigation, vol. 87, pp. 6-11, Jan 1991.
[101] J. Teixido, M. E. Hemler, J. S. Greenberger, and P. Anklesaria, "Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma," Journal of Clinical Investigation, vol. 90, pp. 358-67, Aug 1992.
[102] J. M. Kerst, J. B. Sanders, I. C. Slaper-Cortenbach, M. C. Doorakkers, B. Hooibrink, R. H. van Oers, A. E. von dem Borne, and C. E. van der Schoot, "Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activation-dependent way," Blood, vol. 81, pp. 344-51, Jan 15 1993.
[103] N. Rangappa, A. Romero, K. D. Nelson, R. C. Eberhart, and G. M. Smith, "Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation," Journal of Biomedical Materials Research, vol. 51, pp. 625-634, Sep 15 2000.
[104] B. Felding-Habermann and D. A. Cheresh, "Vitronectin and its receptors," Current Opinion in Cell Biology, vol. 5, pp. 864-8, Oct 1993.
[105] H. K. Kleinman and G. R. Martin, "Matrigel: basement membrane matrix with biological activity," Semin Cancer Biol, vol. 15, pp. 378-86, Oct 2005.
[106] D. T. Scadden, "The stem-cell niche as an entity of action," Nature, vol. 441, pp. 1075-1079, Jun 28 2006.
[107] S. K. Nilsson, H. M. Johnston, G. A. Whitty, B. Williams, R. J. Webb, D. T. Denhardt, I. Bertoncello, L. J. Bendall, P. J. Simmons, and D. N. Haylock, "Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells," Blood, vol. 106, pp. 1232-1239, Aug 15 2005.
[108] K. A. Moore and I. R. Lemischka, "Stem cells and their niches," Science, vol. 311, pp. 1880-1885, Mar 31 2006.
[109] L. H. Li and T. Xie, "Stem cell niche: Structure and function," Annual Review of Cell and Developmental Biology, vol. 21, pp. 605-631, 2005.
[110] P. Gupta, T. R. Oegema, J. J. Brazil, A. Z. Dudek, A. Slungaard, and C. M. Verfaillie, "Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche," Blood, vol. 92, pp. 4641-4651, Dec 15 1998.
[111] U. B. Jensen, S. Lowell, and F. M. Watt, "The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis," Development, vol. 126, pp. 2409-2418, Jun 1999.
[112] R. F. Klees, R. M. Salasznyk, K. Kingsley, W. A. Williams, A. Boskey, and G. E. Plopper, "Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway," Mol Biol Cell, vol. 16, pp. 881-890, Feb 2005.
[113] C. R. Nuttelman, M. C. Tripodi, and K. S. Anseth, "Synthetic hydrogel niches that promote hMSC viability," Matrix Biology, vol. 24, pp. 208-218, May 2005.
[114] Q. Feng, C. Chai, X. S. Jiang, K. W. Leong, and H. Q. Mao, "Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin," Journal of Biomedical Materials Research Part A, vol. 78A, pp. 781-791, Sep 15 2006.
[115] S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-Novakovic, "Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells," Proc Natl Acad Sci U S A, vol. 104, pp. 11298-303, Jul 3 2007.
[116] C. F. Chang, M. W. Lee, P Y. Kuo, Y J. Wang, Y. H. Tu, and S. C. Hung, "Three-dimensional collagen fiber remodeling by mesenchymal stem cells requires the integrin-matrix interaction," Journal of Biomedical Materials Research Part A, vol. 80A, pp. 466-474, Feb 2007.
[117] M. J. Seraj, R. S. Samant, M. F. Verderame, and D. R. Welch, "Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13," Cancer Research, vol. 60, pp. 2764-2769, Jun 1 2000.
[118] D. E. Discher, P. Janmey, and Y. L. Wang, "Tissue cells feel and respond to the stiffness of their substrate," Science, vol. 310, pp. 1139-1143, Nov 18 2005.
[119] R. J. Pelham, Y. Wang. Proc. Natl. Acad. Sci.U.S.A. 94, 13661 (1997) with Erratum 95, 12070a (1998).
[120] (Smooth muscle cells) A. Engler et al. Biophys. J. 86, 617 (2004).
[121] P. C. Georges, P. A. Janmey, J. Appl. Physiol. 98, 1547 (2005).
[122] (Skeletal Muscle Cells) A. J. Engler et al., J. Cell Biol.166, 877 (2004)
[123] (Fibroblasts and epithelial cells) R. J. Pelham, Y. Wang. Proc. Natl. Acad. Sci. U.S.A. 94, 13661 (1997) with Erratum 95, 12070a (1998).
[124] P. C. Georges, W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey, "Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures," Biophysical Journal, vol. 90, pp. 3012-3018, Apr 2006.
[125] L. A. Flanagan, Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey, "Neurite branching on deformable substrates," Neuroreport, vol. 13, pp. 2411-2415, Dec 20 2002.
[126] T. Kondo, S. A. Johnson, M. C. Yoder, R. Romand, and E. Hashino, "Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 4789-4794, Mar 29 2005.
[127] C. P. Hofstetter, E. J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D. J. Prockop, and L. Olson, "Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 2199-2204, Feb 19 2002.
[128] A. J. Engler, M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher, "Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments," J Cell Biol, vol. 166, pp. 877-87, Sep 13 2004.
[129] G. Ferrari, G. Cusella-De Angelis, M. Coletta, E. Paolucci, A. Stornaiuolo, G. Cossu, and F. Mavilio, "Muscle regeneration by bone marrow-derived myogenic progenitors," Science, vol. 279, pp. 1528-30, Mar 6 1998.
[130] J. A. Andrades, J. A. Santamaria, M. E. Nimni, and J. Becerra, "Selection and amplification of a bone marrow cell population and its induction to the chondro-osteogenic lineage by rhOP-1: an in vitro and in vivo study," Int J Dev Biol, vol. 45, pp. 689-93, Jun 2001.
[131] K. Holmbeck, P. Bianco, J. Caterina, S. Yamada, M. Kromer, S. A. Kuznetsov, M. Mankani, P. G. Robey, A. R. Poole, I. Pidoux, J. M. Ward, and H. Birkedal-Hansen, "MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover," Cell, vol. 99, pp. 81-92, Oct 1 1999.
[132] M. Morinobu, M. Ishijima, S. R. Rittling, K. Tsuji, H. Yamamoto, A. Nifuji, D. T. Denhardt, and M. Noda, "Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo," Journal of Bone and Mineral Research, vol. 18, pp. 1706-1715, Sep 2003.
[133] J. Deng, B. E. Petersen, D. A. Steindler, M. L. Jorgensen, and E. D. Laywell, "Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation," Stem Cells, vol. 24, pp. 1054-1064, Apr 2006.
[134] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak, "Multilineage potential of adult human mesenchymal stem cells," Science, vol. 284, pp. 143-147, Apr 2 1999.
[135] R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, "Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment," Developmental Cell, vol. 6, pp. 483-495, Apr 2004.
[136] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol. 126, pp. 677-689, Aug 25 2006.
[137] A. Higuchi, S. T. Yang, P. T. Li, Y. Chang, E. M. Tsai, Y. H. Chen, Y. J. Chen, H. C. Wang, and S. T. Hsu, "Polymeric Materials for Ex vivo Expansion of Hematopoietic Progenitor and Stem Cells," Polymer Reviews, vol. 49, pp.181-200, 2009.
[138] J. A. LaIuppa, T. A. McAdams, E. T. Papoutsakis, and W. M. Miller, "Culture materials affect ex vivo expansion of hematopoietic progenitor cells," Journal of Biomedical Materials Research, vol. 36, pp. 347-359, Sep 5 1997.
[139] X. S. Jiang, C. Chai, Y. Zhang, R. X. Zhuo, H. Q. Mao, and K. W. Leong, "Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34(+) cells," Biomaterials, vol. 27, pp. 2723-2732, May 2006.
[140] C. L. McDowell and E. T. Papoutsakis, "Serum increases the CD13 receptor expression, reduces the transduction of fluid-mechanical forces, and alters the metabolism of HL60 cells cultured in agitated bioreactors," Biotechnology and Bioengineering, vol. 60, pp. 259-268, Oct 20 1998.
[141] C. E. Sandstrom, W. M. Miller, and E. T. Papoutsakis, "Serum-Free Media for Cultures of Primitive and Mature Hematopoietic-Cells-Review," Biotechnology and Bioengineering, vol. 43, pp. 706-733, Apr 5 1994.
[142] G. Almeida-Porada, R. L. Brown, F. R. MacKintosh, and E. D. Zanjani, "Evaluation of serum-free culture conditions able to support the ex vivo expansion and engraftment of human hematopoietic stem cells in the human-to-sheep xenograft model," Journal of Hematotherapy & Stem Cell Research, vol. 9, pp. 683-693, Oct 2000.
[143] S. Neuss, C. Apel, P. Buttler, B. Denecke, A. Dhanasingh, X. L. Ding, D. Grafahrend, A. Groger, K. Hemmrich, A. Herr, W. Jahnen-Dechent, S. Mastitskaya, A. Perez-Bouza, S. Rosewick, J. Salber, M. Woltje, and M. Zenke, "Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering," Biomaterials, vol. 29, pp. 302-313, Jan 2008.
[144] R. Langer and D. A. Tirrell, "Designing materials for biology and medicine," Nature, vol. 428, pp. 487-492, Apr 1 2004.
[145] S. Rafii, R. Mohle, F. Shapiro, B. M. Frey, and M. A. Moore, "Regulation of hematopoiesis by microvascular endothelium," Leuk Lymphoma, vol. 27, pp. 375-86, Nov 1997.
[146] T. M. Dexter, T. D. Allen, and L. G. Lajtha, "Conditions controlling the proliferation of haemopoietic stem cells in vitro," J Cell Physiol, vol. 91, pp. 335-44, Jun 1977.
[147] N. J. Boudreau and P. L. Jones, "Extracellular matrix and integrin signalling: the shape of things to come," Biochem J, vol. 339 ( Pt 3), pp. 481-8, May 1 1999.
[148] X. S. Jiang, C. Chai, Y. Zhang, R. X. Zhuo, H. Q. Mao, and K. W. Leong, "Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells," Biomaterials, vol. 27, pp. 2723-32, May 2006.
[149] Q. Feng, C. Chai, X. S. Jiang, K. W. Leong, and H. Q. Mao, "Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin," Journal of Biomedical Materials Research Part A, vol. 78, pp. 781-91, Sep 15 2006.
[150] C. M. Verfaillie, P. Gupta, F. Prosper, R. Hurley, B. Lundell, and R. Bhatia, "The Hematopoietic Microenvironment: Stromal Extracellular Matrix Components As Growth Regulators For Human Hematopoietic Progenitors," Hematology, vol. 4, pp. 321-333, 1999.
[151] A. J. Potocnik, C. Brakebusch, and R. Fassler, "Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow," Immunity, vol. 12, pp. 653-63, Jun 2000.
[152] K. P. Schofield, M. J. Humphries, E. de Wynter, N. Testa, and J. T. Gallagher, "The effect of alpha4 beta1-integrin binding sequences of fibronectin on growth of cells from human hematopoietic progenitors," Blood, vol. 91, pp. 3230-8, May 1 1998.
[153] C. M. Verfaillie, J. B. Mccarthy, and P. B. Mcglave, "Differentiation of Primitive Human Multipotent Hematopoietic Progenitors into Single Lineage Clonogenic Progenitors Is Accompanied by Alterations in Their Interaction with Fibronectin," Journal of Experimental Medicine, vol. 174, pp. 693-703, Sep 1 1991.
[154] K. Franke, T. Pompe, M. Bornhauser, and C. Werner, "Engineered matrix coatings to modulate the adhesion of CD133(+) human hematopoietic progenitor cells," Biomaterials, vol. 28, pp. 836-843, Feb 2007.
[155] F. Li, S. D. Redick, H. P. Erickson, and V. T. Moy, "Force measurements of the alpha5beta1 integrin-fibronectin interaction," Biophysical Journal, vol. 84, pp. 1252-62, Feb 2003.
[156] E. B. Evans, "Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy," Biophysical Chemistry, vol. 82, pp. 83-97, Dec 13 1999.
[157] D. E. Ingber, "Mechanical signalling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology," Circ Res, vol. 91, pp. 877-887, Nov 15 2002.
[158] S. Huang and D. E. Ingber, "The structural and mechanical complexity of cell-growth control," Nature Cell Biology, vol. 1, pp. E131-8, Sep 1999.
[159] R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, "Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment," Developmental Cell, vol. 6, pp. 483-95, Apr 2004.
[160] I. Kurth, K. Franke, T. Pompe, M. Bornhauser, and C. Werner, "Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate," Macromol Biosci, vol. 11, pp. 739-47, Jun 14 2011.
[161] B. M. Sagar, S. Rentala, P. N. Gopal, S. Sharma, and A. Mukhopadhyay, "Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells," Biochem Biophys Res Commun, vol. 350, pp. 1000-5, Dec 1 2006.
[162] R. Bhatia, A. D. Williams, and H. A. Munthe, "Contact with fibronectin enhances preservation of normal but not chronic myelogenous leukemia primitive hematopoietic progenitors," Experimental Hematology, vol. 30, pp. 324-332, Apr 2002.
[163] C. M. Orschell-Traycoff, K. Hiatt, R. N. Dagher, S. Rice, M. C. Yoder, and E. F. Srour, "Homing and engraftment potential of Sca-1(+)lin(-) cells fractionated on the basis of adhesion molecule expression and position in cell cycle," Blood, vol. 96, pp. 1380-1387, Aug 15 2000.
[164] D. H. Ryan, B. L. Nuccie, C. N. Abboud, and J. M. Winslow, "Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells," Journal of Clinical Investigation, vol. 88, pp. 995-1004, Sep 1991.
[165] D. A. Williams, M. Rios, C. Stephens, and V. P. Patel, "Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions," Nature, vol. 352, pp. 438-41, Aug 1 1991.
[166] N. Yanai, C. Sekine, H. Yagita, and M. Obinata, "Roles for Integrin Very Late Activation Antigen-4 in Stroma-Dependent Erythropoiesis," Blood, vol. 83, pp. 2844-2850, May 15 1994.
[167] K. Hamamura, H. Matsuda, Y. Takeuchi, S. Habu, H. Yagita, and K. Okumura, "A critical role of VLA-4 in erythropoiesis in vivo," Blood, vol. 87, pp. 2513-2517, Mar 15 1996.
[168] T. Yokota, K. Oritani, H. Mitsui, K. Aoyama, J. Ishikawa, H. Sugahara, I. Matsumura, S. Tsai, Y. Tomiyama, Y. Kanakura, and Y. Matsuzawa, "Growth-supporting activities of fibronectin on hematopoietic stem progenitor cells in vitro and in vivo: Structural requirement for fibronectin activities of CS1 and cell-binding domains," Blood, vol. 91, pp. 3263-3272, May 1 1998.
[169] L. C. Qian and W. M. Saltzman, "Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification," Biomaterials, vol. 25, pp. 1331-1337, Mar-Apr 2004.
[170] A. Baron-Van Evercooren, H. K. Kleinman, S. Ohno, P. Marangos, J. P. Schwartz, and M. E. Dubois-Dalcq, "Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures," J Neurosci Res, vol. 8, pp. 179-93, 1982.
[171] S. Carbonetto and P. Cochard, "In vitro studies on the control of nerve fiber growth by the extracellular matrix of the nervous system," J Physiol (Paris), vol. 82, pp. 258-70, 1987.
[172] N. G. Carri, R. Perris, S. Johansson, and T. Ebendal, "Differential outgrowth of retinal neurites on purified extracellular matrix molecules," J Neurosci Res, vol. 19, pp. 428-39, Apr 1988.
[173] V. W. Yong, H. Horie, and S. U. Kim, "Comparison of six different substrata on The plating efficiency, differentiation and survival of human dorsal root ganglion neurons in culture," Dev Neurosci, vol. 10, pp. 222-30, 1988.
[174] S. Maurice, S. Srouji, and E. Livne, "Isolation of progenitor cells from cord blood using adhesion matrices," Cytotechnology, vol. 52, pp. 125-137, 2006.
[175] W. Ma, T. Tavakoli, E. Derby, Y. Serebryakova, M. S. Rao, and M. P. Mattson, "Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells," Bmc Developmental Biology, vol. 8, Sep 22 2008.
[176] Y. Li, T. Ma, D. A. Kniss, S. T. Yang, and L. C. Lasky, "Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: In vitro simulation of the marrow microenvironment," Journal of Hematotherapy & Stem Cell Research, vol. 10, pp. 355-368, Jun 2001.
[177] A. M. Gianni, S. Siena, M. Bregni, C. Tarella, A. C. Stern, A. Pileri, and G. Bonadonna, "Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation," Lancet, vol. 2, pp.580-5, Sep 9 1989.
[178] S. Siena, M. Bregni, B. Brando, F. Ravagnani, G. Bonadonna, and A. M. Gianni, "Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor," Blood, vol. 74, pp. 1905-14, Nov 1 1989.
[179] D. R. Sutherland, A. Keating, R. Nayar, S. Anania, and A. K. Stewart, "Sensitive detection and enumeration of CD34+ cells in peripheral and cord blood by flow cytometry," Experimental Hematology, vol. 22, pp. 1003-10, Sep 1994.
[180] E. A. de Wynter, A. J. Emmerson, and N. G. Testa, "Properties of peripheral blood and cord blood stem cells," Baillieres Best Pract Res Clin Haematol, vol. 12, pp. 1-17, Mar-Jun 1999.
[181] B. Thilaganathan, K. H. Nicolaides, and G. Morgan, "Subpopulations of CD34-positive haemopoietic progenitors in fetal blood," Br J Haematol, vol. 87, pp. 634-6, Jul 1994.
[182] K. U. J.G. Bender, D. Walker, "Guidelines for determination of CD34+ cells by flow cytometry: Application to the harvesting and transplantation of peripheral blood stem cells," The Mulhouse Manual 1994.
[183] J. W. Gratama, J. Kraan, W. Levering, D. R. VanBockstaele, G. T. Rijkers, and C. E. VanderSchoot, "Analysis of variation in results of CD34(+) hematopoietic progenitor cell enumeration in a multicenter study," Cytometry, vol. 30, pp. 109-117, Jun 15 1997.
[184] H. E. Johnsen, "Report from a Nordic workshop on CD34+ cell analysis: technical recommendations for progenitor cell enumeration in leukapheresis from multiple myeloma patients. Nordic Myeloma Study Group Laboratories," Journal of Hematotherapy, vol. 4, pp. 21-8, Feb 1995.
[185] M. R. L. M.A. Owens, "Peripheral blood stem cell quantitation. In: Flow Cytometric Principles for Clinical Laboratory Practice," Wiley- Liss, New York, pp. 111–127, 1995.
[186] M. B. S. Siena, M. Di Nicola, F. Peccatori, M. Magni, B. Brando, F. Ravagnani, A.M. Gianni, "Milan protocol for clinical CD34+ cell estimation in peripheral blood for autografting in patients with cancer. In: Hematopoietic Stem Cells: The Mulhouse Manual," Alpha Med. Press, Dayton pp. 23-30, 1994.
[187] J. W. Gratama, A. Orfao, D. Barnett, B. Brando, A. Huber, G. Janossy, H. E. Johnsen, M. Keeney, G. E. Marti, F. Preijers, G. Rothe, S. Serke, D. R. Sutherland, C. E. Van der Schoot, G. Schmitz, and S. Papa, "Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells. European Working Group on Clinical Cell Analysis," Cytometry, vol. 34, pp. 128-42, Jun 15 1998.
[188] K. L. G. M.J. Borowitz, K.E. Schultz, G.T. Stelzer,, "Immunophenotyping of acute leukemia by flow cytometry: Use of CD45 and right angle light scatter to gate on leukemic blasts in three color analysis," Am. J. Clin. Pathol, vol. 100, 1993.
[189] C. H. Chen, W. Lin, S. Shye, R. Kibler, K. Grenier, D. Recktenwald, and L. W. Terstappen, "Automated enumeration of CD34+ cells in peripheral blood and bone marrow," Journal of Hematotherapy, vol. 3, pp. 3-13, Spring 1994.
[190] G. Fritsch, D. Printz, M. Stimpfl, M. N. Dworzak, V. Witt, U. Potschger, and P. Buchinger, "Quantification of CD34+ cells: comparison of methods," Transfusion, vol. 37, pp. 775-84, Aug 1997.
[191] S. S. K. Gutensohn, U. Cassens, J. Fischer, G. Fritsch, S. Fruehauf, H.S.P. Garritsen, W. Gebauer, R. Haas, H.G. Ho¨ffkes, A. Humpe, H.D. Kleine, R. Moog, J. Riggert, G. Rothe, P. Schlenke, G. Schmitz, T. Tonn, B. Wo¨rmann, B.L. Ziegler,, "Durchflubzytometrische Analyse CD34- exprimierender ha¨matopoetischer Zellen in Blut und Zytafereseprodukten," Infusionsther Transfusionsmed vol. 23 (Suppl 2), pp. 1-23., 1996.
[192] C. Kreissig, A. Kirsch, and S. Serke, "Characterization and measurement of CD34-expressing hematopoietic cells," Journal of Hematotherapy, vol. 3, pp. 263-89, Winter 1994.
[193] M. W. Lowdell and D. R. Bainbridge, "External quality assurance for CD34 cell enumeration—results of a preliminary national trial. Royal Microscopical Society Clinical Flow Cytometry Group QA Schemes," Bone Marrow Transplant, vol. 17, pp. 849-53, May 1996.
[194] M. A. Lumley, D. F. McDonald, H. M. Czarnecka, L. J. Billingham, and D. W. Milligan, "Quality assurance of CD34+ cell estimation in leucapheresis products," Bone Marrow Transplant, vol. 18, pp. 791-6, Oct 1996.
[195] J. W. Gratama, A. Orfao, D. Barnett, B. Brando, A. Huber, G. Janossy, H. E. Johnsen, M. Keeney, G. E. Marti, F. Preijers, G. Rothe, S. Serke, D. R. Sutherland, C. E. Van der Schoot, G. Schmitz, S. Papa, and E. W. G. C. C. Anal, "Flow cytometric enumeration of CD34(+) hematopoietic stem and progenitor cells," Cytometry, vol. 34, pp. 128-142, Jun 15 1998.
[196] D. R. Sutherland, L. Anderson, M. Keeney, R. Nayar, and I. Chin-Yee, "The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering," Journal of Hematotherapy, vol. 5, pp. 213-26, Jun 1996.
[197] G. Olesen, H. Tonder, M. S. Holm, and P. Hokland, "Long-term culture of hematopoietic stem cells - validating the stromal component of the CAFC assay," Cytotherapy, vol. 3, pp. 107-116, 2001.
[198] J. E. Dick, "Normal and leukemic human stem cells assayed in SCID mice," Semin Immunol, vol. 8, pp. 197-206, Aug 1996
指導教授 樋口亞紺(Higuchi Akon) 審核日期 2013-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明