博碩士論文 972403002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.191.13.255
姓名 潘育麒(Yu-Chi Pan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究
★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用
★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將開發兩種複合式有機無機高分子電解質,第一部分之高分子電解質以三嵌段高分子 Jeffamine ED2003 與主鏈聚丙烯腈 polyacrylonitrile 高分子及有機矽源 3-胺丙基三甲氧基矽烷 (APTMS) 和 3-甘油丙基三甲氧基矽烷 (GLYMO) 水解聚合形成梳狀結構。此系列固態電解質在 30 度 C 時最佳離子導電度可達 7.4 × 10-5 S cm-1,電化學穩定性也可承受 4.0 V 的氧化裂解電壓,膠態電解質於 30 C 之離子導電度也可達到 10-3 S cm-1 以上與 4.5 V 的電化學穩定性,足可取代電池中之隔離膜與電解液部分來進行鋰電池之充放電循環。
另一部分為以聚乙二醇二甲基丙烯酸酯 Poly(ethylene glycol) diacrylate 作為交聯劑與 Jeffamine ED2003 形成前驅物,再導入矽源 3-甘油丙基三甲氧基矽烷 (GLYMO) 與 2-[甲氧基(聚乙烯養基)丙基]三甲氧基矽烷 (MPEOPS) 進行聚合水解,形成具有良好機械強度與高孔隙之直鏈型高分子電解質薄膜。固態電解質在最佳化鋰鹽加入量時於 30 度 C 離子導電度可達 1.5 × 10-4 S cm-1,同時電化學穩定性也可承受 4.5 V 的氧化裂解電壓。而其直鏈型結構提供了多孔隙之特性,可吸附大量液態電解質成為膠態電解質後室溫導電度最高可達 5.3 mS cm-1,進行鈕扣型電池充放電測試也可維持 30 次以上之循環壽命。此兩種高分子電解質在導電度、電化學穩定皆由良好的表現足以應用在鋰高分子電池中。
另一部分為具磷酸官能基之中孔洞矽材之固態核磁共振研究探討。在此開發出含有磷酸官能基之中孔洞矽材 SBA-15 利用直接合成法可成功製造出有機官能基矽源比高達 25%,且利用大量的固態核磁共振技術對含磷酸官能基之中孔洞矽材進行細部研究。利用 13C CPMAS NMR 與 31P MAS NMR 對初合成樣品、模板移除樣品和酸洗後樣品進行化學環境與官能基的鑑定。磷酸官能基在初合成樣品中的狀態為含酯類的自由擾動鏈段,31P MAS NMR 化學位移為 33 ppm,經過模板移除和酸洗後會得到 31P MAS NMR 化學位移為 32 ppm 與 22 ppm。經由除水實驗以及 NMR 中 29Si MAS NMR、1H31P29Si 兩段式交叉極化等技術解析出 22 ppm 為磷酸官能基與鄰近 Si-OH 形成氫鍵,以及少量的 P-O-Si 環狀結構。之後配合密度泛函理論 (Density functional theory, DFT) 計算 31P29Si 之間距離關係,配合 NMR 中的雙頻共振實驗 (Rotational echo double resonance, REDOR) 量測31P29Si 之間偶極作用力關係進一步推算出 31P29Si 相對距離,可發現實驗結果與理論計算結果相符合。此實驗方式提供了有機官能基在中孔洞矽材中微觀環境之光譜證明,並解析出異核原子之間距離關係,結合了 NMR 實驗部分與 DFT 理論計算使中孔洞矽材中有機官能基之空間環境有了進一步的了解。
摘要(英) Two types of new hybrid organic-inorganic polymer electrolytes have been synthesized and characterized. One series is comb-branched polymer based on polyacrylonitrile, Jeffamine ED2003 and silica sources like APTMS and GLYMO. A maximum ionic conductivity value of 7.4 × 10-4 S cm-1 at 30 oC is achieved for the hybrid electrolyte. The present hybrid electrolyte system offers a remarkable improvement in ionic conductivity and mechanical strength. The 7Li NMR (nuclear magnetic resonance) results reveal that there exists a strong correlation between the dynamic properties of the charge carriers and the polymer matrix. The electrochemical stability window is found to be around 4.0 V. And the gel polymer electrolyte reached a maximum conductivity value of 5.3 mS cm-1 at 30 oC and electrochemical stability up to 4.5 V, the high ionic conductivity of gel polymer electrolyte is sufficient for application of lithium ion batteries. The other system is coss-linked network polymer, base on Poly(ethylene glycol) diacrylate (PEG-DA), Jeffamine ED2003, and silica sources like MPEOPS and GLYMO. A maximum ionic conductivity value of 1.5 × 104 S cm-1 at 30 oC is achieved for the hybrid electrolyte with a [O]/[Li] of 16. The electrochemical stability window is found to be around 4.3 V. The swelling ratio and ionic conductivity are measured with organic electrolyte, the gel polymer electrolyte achieved 5.3 mS cm-1 at 30 oC. And as the gel polymer electrolyte, the test cell shows good cycling performance up to 30 cycles. The solid and gel polymer electrolytes hold promise for applications in lithium polymer batteries.
And the other project is well-ordered mesoporous silicas SBA-15 functionalized with variable contents of phosphonic acid groups (up to 25 mol % based on silica) have successfully synthesized via co-condensation of 3-triethoxysilylpropyldiethylphosphonate (PETES) and tetraethoxysilane (TEOS) using triblock copolymer Pluronic P123 as the structure-directing agent under acidic conditions. The status and local structures of the phosphonic functional groups were investigated by extensive multinuclear solid-state NMR studies. 13C and 31P NMR results revealed that phosphonic ester moieties were obtained for the as-synthesized samples and for the samples subjected to template removal by concentrated H2SO4. After surfactant removal, there are two distinct phosphorous sites present in the materials. The generation of phosphonic acid groups can be accomplished by dealkylation reaction via treating with concentrated HCl. Two distinct local environments for the phosphorus sites of phosphonic acid groups have been observed at 32 and 22 ppm in the 31P magic angle spinning (MAS) NMR spectra. The relative ratio between these two species is strongly depends on the moisture present in the materials. The PO3H2 groups forming the hydrogen bonds with the nearby Q3 Si-OH are the major species responsible for the 22 ppm peak based on the results of 1H-31P-29Si double cross-polarization NMR experiments and density functional theory calculations (DFT). Of particular interest is that 29Si {31P} rotational echo double resonance (REDOR) NMR experiments are utilized to measure 31P29Si distances between the phosphorus site and the silica framework. A 29Si31P distance of 5.0 Å is obtained for the phosphorus site to the silicon site of the Q3 species for the as-synthesized sample. A reasonable fitting to the REDOR data for the acidified sample can also be achievable by assuming the presence of different structural units. The combination of solid-state NMR studies and the DFT calculations allow one to gain deeper insights into the local environments of the organic groups functionalized in mesoporous silica materials.
關鍵字(中) ★ 鋰離子電池
★ 固態高分子電解質
★ 中孔洞矽材
★ 固態核磁共振
關鍵字(英)
論文目次 中文摘要...................................................ii
英文摘要...................................................v
圖目錄..................................................xiv
表目錄................................................xxiii
複合式高分子電解質材料之製備及特性分析.........................1
一、緒論...................................................1
1-1. 鋰離子電池簡介......................................1
1-2. 高分子電解質.......................................3
1-2-1. 固態高分子電解質....................................5
1-2-2. 膠態高分子電解質...................................10
1-2-3. 無機複合高分子電解質................................17
1-3. 鋰離子鹽類........................................19
1-4. 高分子電解質傳導機制................................26
1-4-1. 固態高分子電解質傳導機制............................26
1-4-2. 膠態高分子電解質傳導機制............................30
二、研究內容與方法.........................................33
2-1. 研究動機..........................................33
2-2. 實驗藥品..........................................36
2-3. 儀器設備..........................................38
2-4. 高分子電解質製備...................................39
2-4-1. 梳狀支鏈型複合式高分子電解質.........................39
2-4-2. 直鏈型複合式高分子電解質............................43
2-4-3. 膠態高分子電解質...................................45
2-5. 儀器分析原理......................................45
2-5-1. 微差掃描熱卡計 (Differential Scanning Calorimeter,
DSC) ....................................................45
2-5-2. 傅立葉紅外線光譜儀 (Fourier transform infrared
spectroscopy, FTIR) .....................................47
2-5-3. 交流阻抗分析儀 (AC-Impedance) ......................48
2-5-4. 固態核磁共振儀 (Solid State Nuclear Magnetic
Resonance, SSNMR) .......................................49
2-5-5. 線性掃描伏安法 (Linear Sweep Voltammetry, LSV) ....54
三、實驗結果與討論 ........................................55
3-1. 梳狀支鏈型複合式高分子電解質 PAGE−x..................55
3-1-1. 微差掃描熱卡計量測.................................56
3-1-2. 紅外線吸收光譜之鑑定分析............................59
3-1-3. 固態核磁共振骨架鑑定................................67
3-1-4. 交流阻抗儀之離子導電度測試...........................73
3-1-5. 固態核磁共振 7Li 譜寬分析...........................78
3-1-6. 固態核磁共振 7Li 化學環境分析.......................83
3-1-7. 線性掃描伏安法.....................................87
3-1-8. 鋰離子遷移數目測試.................................89
3-1-9. 膠態高分子電解質澎潤比測試...........................92
3-1-10. 膠態高分子離子導電度測試............................95
3-1-11. 膠態電解質線性掃描伏安法............................98
3-1-12. 膠態電解質鋰電池性能測試............................99
3-2. 直鏈型複合式高分子電解質 DGM−x.....................101
3-2-1. 微差掃描熱卡計量測................................102
3-2-2. 紅外線吸收光譜鑑定分析.............................105
3-2-3. 固態核磁共振骨架鑑定...............................109
3-2-4. 交流阻抗儀之離子導電度測試..........................111
3-2-5. 線性掃描伏安法....................................116
3-2-6. 膠態高分子電解質澎潤比測試..........................118
3-2-7. 膠態高分子電解質離子導電度測試......................121
3-2-8. 膠態電解質線性掃描伏安法...........................125
3-2-9. 膠態電解質鋰電池性能測試...........................127
四、結論.................................................129
具磷酸官能基之中孔洞矽材之固態核磁共振研究探討.................132
五、緒論.................................................132
5-1. 中孔洞材料之應用..................................132
5-2. 研究目的.........................................135
六、研究內容與方法........................................137
6-1. 含磷酸官能基之中孔洞矽材...........................137
6-1-1. 初合成之樣品.....................................137
6-1-2. 模板移除之樣品....................................138
6-1-3. 酸化後之樣品.....................................138
6-2. 固態核磁共振.....................................139
6-2-1. Zeeman 作用....................................141
6-2-2. 化學非均向位移 (Chemical Shift Anisotropy, CSA) ..142
6-2-3. 偶極−偶極交互作用力 (Dipole−Dipole interaction) ..144
6-2-4. J-coupling .....................................148
6-3. 固態核磁共振光譜技術介紹...........................149
6-3-1. 去耦合 (decoupling) 作用........................149
6-3-2. 魔角旋轉 (magic angle spinning, MAS) ............150
6-3-3. 交叉極化 (Cross Polarization, CP) ...............151
6-3-4. 雙頻共振實驗 (Rotational-Echo Double Resonance,
REDOR)..................................................155
6-3-5. 二維同核核磁共振實驗 (2D Homonuclear NMR) .........159
6-3-6. 二維單量子雙量子關聯核磁共振實驗 (2D 31P−31P Single Quantum-Double Quantum (SQ-DQ) MAS NMR) ................161
七、實驗結果與討論........................................163
7-1. 磷酸官能基碳譜與磷譜分析研究........................163
7-2. 含磷酸官能基中孔洞矽材骨架研究討論...................171
7.3 磷酸官能基於孔洞中距離分析研究......................178
7-4. 31P−29Si之間距離綜合討論..........................186
八、結論.................................................199
參考文獻.................................................200
參考文獻 (1) Whittingham, M. S. Proc. IEEE 2012, 100, 1518.
(2) Dunn, B.; Kamath, H.; Tarascon, J.-M. Science 2011, 334, 928.
(3) Yang, P.; Tarascon, J.-M. Nat. Mater. 2012, 11, 560.
(4) Xu, K. Chem. Rev. 2004, 104, 4303.
(5) Armand, M. Adv. Mater. 1990, 2, 278.
(6) Scrosati, B.; Croce, F.; Panero, S. J. Power Sources 2001, 100, 93.
(7) Orsini, F.; Du Pasquier, A.; Beaudoin, B.; Tarascon, J. M.; Trentin, M.; Langenhuizen, N.; De Beer, E.; Notten, P. J. Power Sources 1998, 76, 19.
(8) Wang, C.; Li, D.; Too, C. -O.; Wallace, G. G. Chem. Mater. 2009, 21, 2604.
(9) Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Nano 2010, 4, 5843.
(10) Parker, J. M.; Wright, P. V. Polymer 1973, 14, 589.
(11) Wright, P. V. Br. Poly. J. 1975, 7, 319.
(12) Armand, M. B.; Chabagno, J. M.; St. Andrews Ecose: 1978, p 20~p22.
(13) Shriver, D. F. J. Electrochem. Soc. 1982, 129, 1694.
(14) Armand, M. B. Solid State Ionics 1983, 11, 91.
(15) Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324.
(16) Abraham, K. M.; Jiang, Z.; Carroll, B. Chem. Mater. 1997, 9, 1978.
(17) Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Liu, W.; Tang, X. New J. Chem. 2011, 35, 614.
(18) Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Electrochem. Soc. 2000, 147, 3219.
(19) Wang, H.-L.; Kao, H.-M.; Digar, M.; Wen, T.-C. Macromolecules 2001, 34, 529.
(20) Çelik, S. Ü.; Bozkurt, A. Solid State Ionics 2010, 181, 987.
(21) Sun, X.-G.; Kerr, J. B. Macromolecules 2006, 39, 362.
(22) Aydın, H.; Şenel, M.; Erdemi, H.; Baykal, A.; Tülü, M.; Ata, A.; Bozkurt, A. J. Power Sources 2011, 196, 1425.
(23) Zhang, Z.; Sherlock, D.; West, R.; West, R. Macromolecules 2003, 36, 9176.
(24) Kaskhedikar, N.; Burjanadze, M.; Karatas, Y.; Wiemhöfer, H.-D. Solid State Ionics 2006, 177, 3129.
(25) Kurian, M.; Galvin, M. E.; Trapa, P. E.; Sadoway, D. R.; Mayes, A. M. Electrochim. Acta 2005, 50, 2125.
(26) Welna, D. T.; Stone, D. A.; Allcock, H. R. Chem. Mater. 2006, 18, 4486.
(27) Dias, F. B.; Plomp, L.; Veldhuis, J. B. J. J. Power Sources 2000, 88, 169.
(28) Abraham, K. M.; Alamgir, M. Solid State Ionics 1994, 70, 20.
(29) Tarascon, J.-M.; Gozdz, A. S.; Schmutz, C.; Shokoohi, F.; Warren, P. C. Solid State Ionics 1996, 86-88, 49.
(30) Song, J. Y.; Wang, Y. Y.; Wan, C. C. J. Power Sources 1999, 77, 183.
(31) Kelly, I. E.; Owen, J. R.; Steele, B. C. H. J. Power Sources 1985, 14, 13.
(32) Chintapalli, S.; Frech, R. Solid State Ionics 1996, 86-88, 341.
(33) Borghini, M. C.; Mastragostino, M.; Zanelli, A. Electrochim. Acta 1996, 41, 2369.
(34) Cha, E. -H.; Macfarlane, D. R.; Forsyth, M.; Lee, C. W. Electrochim. Acta 2004, 50, 335.
(35) Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. J. Appl. Polym. Sc. 1982, 27, 4191.
(36) Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. J. Polym. Sci., Part B: Polym. Phys. 1983, 21, 939.
(37) Choe, H. -S.; Carroll, B. G.; Pasquariello, D. M.; Abraham, K. M. Chem. Mater. 1997, 9, 369.
(38) Liang, Y.-H.; Wang, C.-C.; Chen, C.-Y. J. Power Sources 2007, 172, 886.
(39) Perera, K. S.; ke, M. A. K. L. D. s.; Skaarup, S.; West, K. J. Solid State Electrochem. 2008, 12, 873.
(40) Zhou, D. -Y.; Wang, G. -Z.; Li, W. -S.; Li, G. -L.; Tan, C. -L.; Rao, M. -M.; Liao, Y. H. J. Power Sources 2008, 184, 477.
(41) Takeoka, S.; Maeda, Y.; Tsuchida, E.; Ohno, H. Polym. Adv. Technol. 1980, 1, 201.
(42) Appetecchi, G. B.; F. Croce; Scrosati, B. Electrochim. Acta 1995, 40, 991.
(43) Stephan, A. M.; Renganathan, N. G.; Kumar, T. P.; Thirunakaran, R.; Pitchumani, S.; Shrisudersan, J.; Muniyandi, N. Solid State Ionics 2000, 130, 123.
(44) Liu, Y.; Lee, J. Y.; Hong, L. Solid State Ionics 2002, 150, 317.
(45) Alamgir, M.; Abraham, K. M. J. Electrochem. Soc. 1993, 140, 96.
(46) Ramesh, S.; Arof, A. K. Mater. Sci. Eng., B 2001, 85, 11.
(47) Stephan, A. M.; Nahm, K. S. Polymer 2006, 47, 5952.
(48) Tsuchida, E.; Ohno, H.; Tsunemi, K. Electrochim. Acta 1983, 28, 591.
(49) Gozdz, A. S.; Schmutz, C. N.; Tarascon, J.-M. U. S., 1994; Vol. 5,296,318.
(50) Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I. I. J. Power Sources 1999, 81-82, 804.
(51) Weston, J. E.; Steele, B. C. H. Solid State Ionics 1982, 7, 75.
(52) Almond, D. P.; West, A. R. Solid State Ionics 1986, 18-19, 1105.
(53) Wieczorek, W.; Such, K.; Wyciślik, H.; Płocharski, J. Solid State Ionics 1989, 36, 255.
(54) Kao, H.-M.; Chen, C.-L. Angew. Chem. Int. Ed. 2004, 43, 980.
(55) Kao, H.-M.; Hung, T.-T.; Fey, G. T. K. Macromolecules 2007, 40, 8673.
(56) Liao, C.-C.; Wu, H.-Y.; Saikia, D.; Pan, Y.-C.; Chen, Y.-K.; Fey, G. T. K.; Kao, H.-M. Macromolecules 2008, 41, 8956.
(57) Pan, Y.-C.; Saikia, D.; Fang, J.; Tsai, L.-D.; Fey, G. T. K.; Kao, H.-M. Electrochim. Acta 2011, 56, 8519.
(58) Saikia, D.; Chen, Y. -H.; Pan, Y. -C.; Fang, J.; Tsai, L. -D.; Fey, G. T. -K.; Kao, H. -M. Journal of Materials Chemistry 2011, 21, 10542.
(59) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
(60) Shriver, D. F.; Papke, B. L.; Ratner, M. A.; Dupon, R.; Wong, T.; Brodwin, M. Solid State Ionics 1981, 5, 83.
(61) Vallée, A.; Besner, S.; Prud’Homme, J. Electrochim. Acta 1992, 37, 1579.
(62) Smagin, A. A.; Matyukha, V. A.; Korobtsev, V. P. J. Power Sources 1997, 68, 326.
(63) Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J.-I. J. Power Sources 2002, 104, 260.
(64) Abraham, K. M.; Goldman, J. L.; Natwig, D. L. J. Electrochem. Soc. 1982, 129, 2404.
(65) Webber, A. J. Electrochem. Soc. 1991, 2586.
(66) Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. J. Electrochem. Soc. 2000, 147, 4399.
(67) Wright, P. V. Electrochim. Acta 1998, 43, 1137.
(68) Armand, M. B. Solid State Ionics 1983, 9, 745.
(69) Shriver, D. F.; Farrington, G. C. Chem. Eng. News 1985, 63, 42.
(70) Armand, M. B. Annu. Rev. Mater. Sci. 1986, 16, 245.
(71) Souquet, J.-L.; Michel Duclot, M. L. Solid State Ionics 1996, 85, 149.
(72) Jayathilaka, P. A. R. D.; Dissanayake, M. A. K. L.; Albinsson, I.; Mellander, B.-E. Solid State Ionics 2003, 156, 179.
(73) Stallworth, P. E.; Li, J.; Greenbaum, S. G.; Croce, F.; Slane, S.; Salomon, M. Solid State Ionics 1994, 73, 119.
(74) Stallworth, P. E.; Greenbaum, S. G.; Croce, F.; Slane, S.; Salomon, M. Electrochim. Acta 1995, 40, 2137.
(75) Johansson, P.; Edvardsson, M.; Adebahr, J.; Jacobsson, P. J. Phys. Chem. B 2003, 107, 12622.
(76) Besenhard, J. O. In Handbook of Battery Materials; Wiley-VCH: Weinheim, Germany, 1999.
(77) Brown, S. D.; Greenbaum, S. G.; McLin, M. G.; Wintersgill, M. C.; Fontanella, J. J. Solid State Ionics 1994, 67, 257.
(78) Panero, S.; Scrosati, B.; Greenbaum, S. G. Electrochim. Acta 1992, 37, 1533.
(79) Chung, S. -H.; Jeffrey, K. R.; Stevens, J. R. J. Chem. Phys. 1991, 94, 1803.
(80) Jannasch, P. Electrochim. Acta 2001, 46, 1641.
(81) Jannasch, P. Polymer 2001, 42, 8629.
(82) Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C. Macromolecules
1986, 19, 2149.
(83) Flora, X. H.; Ulaganathan, M.; Babu, R. S.; Rajendran, S. Ionics 2012, 18, 731.
(84) Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Solid State Ionics 2002, 150, 327.
(85) Chen, H.-W.; Chang. F.-C. J Polym Sci Part B Polym Phys 2001, 39, 2407.
(86) Sonobe, N.; Kyotani, T.; Tomita, A. Carbon 1988, 26, 573.
(87) Kurth, D. G.; Bein, T. Langmuir 1993, 9, 2965.
(88) Liang, W.-J.; Kuo, C.-L.; Lin, C.-L.; Kuo, P.-L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1226.
(89) Chu, P. -P.; Jen, H.-P.; Lo, F.-R.; Lang, C. -L. Macromolecules 1999, 32, 4738.
(90) Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324.
(91) Abraham, K. M.; Jiang, Z.; Carroll, B. Chem. Mater. 1997, 9, 1978.
(92) Leveque, M.; Le Nest, J. F.; Gandini, A.; Cheradame, H. J. Power Sources 1985, 14, 27.
(93) Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature 2001, 412, 520.
(94) Christie, A. M.; Lilley, S. J.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. Nature 2005, 433, 50.
(95) Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M. Adv. Funct. Mater. 1998, 10, 161.
(96) Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Funct. Mater. 2000, 12, 1403.
(97) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829.
(98) Fowler, C. E.; Burkett, S. L.; Mann, S. Chem. Commun. 1997, 1769.
(99) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Angew. Chem. Int. Ed. 2006, 45, 3216.
(100) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(101) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Commun. 1996, 1367.
(102) Macquarrie, D. J. Chem. Commun. 1996, 1961.
(103) Lim, M. -H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090.
(104) Lim, M. -H.; Stein, A. Chem. Mater. 1999, 11, 3285.
(105) Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448.
(106) Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.; Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447.
(107) Yang, C.-M.; Zibrowius, B.; Schüth, F. Chem. Commun. 2003, 1772.
(108) Tsai, H.-H. G.; Jheng, G.-L.; Kao, H.-M. J. Am. Chem. Soc. 2008, 130, 11566.
(109) Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M. Chem. Commun. 2009, 5018.
(110) Corriu, R. J. P.; Datas, L.; Guari, Y.; Mehdi, A.; Reyé, C.; Thieuleux, C. Chem. Commun. 2001, 763.
(111) Yang, Q.; Yang, J.; Liu, J.; Li, Y.; Li, C. Chem. Mater. 2005, 17, 3019.
(112) Mauder, D.; Akcakayiran, D.; Lesnichin, S. B.; Findenegg, G. H.; Shenderovich, I. G. J. Phys. Chem. C 2009, 113, 19185.
(113) Wang, P.; Zhao, L.; Wu, R.; Zhong, H.; Zou, H.; Yang, J.; Yang, Q. J. Phys. Chem. C 2009, 113, 1359.
(114) Marschall, R.; Bannat, I.; Caro, J.; Wark, M. Microporous Mesoporous Mater. 2007, 99, 190.
(115) Wüllen, L. v.; Köster, T. K.-J.; Wiemhöfer, H.-D.; Kaskhedikar, N. Chem. Mater. 2008, 20, 7399.
(116) Gullion, T.; Schaefer, J. J. Magn. Reson. 1989, 81, 196.
(117) 高佳駿, 國立中央大學, 2009.
(118) Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G. J. Chem. Phys. 1995, 103, 6951.
(119) Peersen, O. B.; Wu, X. L.; Kustanovich, I.; Smith, S. O. J. Magn. Reson. Ser. A 1993, 104, 334.
(120) Muellera, K. T.; Jarviea, T. P.; Aurentza, D. J.; Roberts, B. W. Chem. Phys. Lett. 1995, 242, 535.
(121) Goetz, J. M.; Schaefer, J. J. Magn. Reson. 1997, 127, 147.
(122) Gullion, T. J. Magn. Reson. 1991, 92, 439.
(123) Hohwy, M.; Jakobsen, H. J.; Edén, M.; Levitt, M. H.; Nielsen, N. C. J. Chem. Phys. 1998, 108, 2686.
(124) Aliev, A.; Ou, D. L.; Ormsby, B.; Sullivan, A. C. J. Mater. Chem. 2000, 10, 2758.
(125) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(126) Petersson, G. A.; A., M.; Al‐Laham J. Chem. Phys. 1991, 94, 6081.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明