博碩士論文 972404010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.142.142.2
姓名 盧正偉(Jeng-Wei Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應
(Study of liver disease and hepatocarcinogenesis in zebrafish: tumorigenicity and synergistic effect between HBx, AFB1, p53 mutant, src and edn1)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響
★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α
★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ Viscolin對不同免疫細胞發炎反應的影響★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 肝臟是人體中最大的器官,它調節許多生理功能如脂質及醣類合成、轉化、解毒、排泄及儲存的功能。過去許多研究已經證明脊椎動物中肝臟發育機制是具有高度保守性的。鑑別參與肝臟形成及肝病的基因及調控路徑提供診斷和治療的基礎。肝細胞癌(HCC)的形成是一個慢性進展,歷經肝炎,脂肪肝,肝纖維化,肝硬化最後發展成為肝癌。B型肝炎病毒(HBV)感染是肝癌的主要致病因素。B型肝炎病毒X抗原(HBx蛋白)在體外可增強細胞株的聚落形成及細胞轉型,並可在小鼠促使肝癌的發生。包括肝癌在內的人類癌症經常伴隨著p53基因突變,而黃麴毒素(AFB1)也是一種非常普遍可誘發肝癌形成之致癌因子。以白蛋白啟動子驅動表達HBx蛋白在小鼠模型,我們已證明肝癌形成前期Src, Edn1, Bmp4, 及Bmp7大量表達。由於斑馬魚的諸多優點,近年來斑馬魚已成為一個研究人類疾病新興的模式,斑馬魚的動物疾病模型提供了測試疾病標誌物及快捷的藥物篩選系統。
在本論文中,我將重點放在三個部分:第一、利用轉殖基因斑馬魚探討HBx蛋白與黃麴毒素對於肝臟疾病或肝癌之協同作用。第二、建立穩定表達HBx或src 在p53突變的轉殖基因斑馬魚,探討HBx蛋白src與p53基因突變對於肝癌之協同作用。第三、利用edn1轉殖基因斑馬魚探討edn1對於肝癌之作用。
我發現HBx蛋白和黃麴毒素協同促進脂肪肝和增加脂肪合成因子、酵素和脂質代謝相關基因的表現。處理黃麴毒素的HBx轉殖基因魚加速產生肝細胞異常增生和增強細胞週期相關基因的表現。 我們的數據顯示黃麴毒素和HBx蛋白於調控脂質代謝相關基因具有協同作用有助於產生脂肪肝,在5.75個月增加細胞週期、細胞分裂相關基因表現,可能和肝細胞異常增生有關。
我發現肝臟專一性表現HBx蛋白,可誘發脂肪肝、肝纖維化和肝糖累積。HBx蛋白僅於p53突變斑馬魚中引發肝癌,並與 src激酶表現增加與活化下游訊息傳遞路徑有關。肝臟專一性表現src激酶可引發肝細胞異常增生、肝癌、肉瘤狀肝癌,並且src激酶與p53突變之間具有協同效應。在src轉殖基因斑馬魚,當肝臟形成增生、不典型增生、肉瘤狀肝癌和肝癌時,肝細胞中的磷酸化-erk、磷酸化-akt、myc、jnk1和vegf訊息蛋白表現增加。當HBx或src過度表現於p53基因突變斑馬魚中,細胞週期、腫瘤發生和轉移分子標記表現增加於後期階段。我的研究顯示,HBx蛋白和src激酶過度表現於p53突變斑馬魚中誘發肝癌生成。
在HBx誘導肝癌老鼠模型中,Edn1被鑑別出來是四個共同調節者其中之一。我使用轉殖基因斑馬魚進一步研究edn1在肝癌生成中扮演的角色。肝臟專一性表現edn1在斑馬魚中產生脂肪肝、纖維化、肝糖累積、膽管擴張、肝細胞異常增生和肝癌。脂質代謝相關基因在5個月增加表現可能與脂肪肝的形成有關,和細胞週期、增殖、腫瘤、轉移相關基因在11個月增加與肝細胞異常增生和肝癌的形成有關。利用異種移植方法發現穩定過度表現EDN1於293T細胞中可增強細胞遷移能力。在10種惡性人類腫瘤,EDN1增加表現於乳癌,腦癌,肝癌,前列腺癌和腎臟癌和降低表現於胃癌。此外,發現miR-1抑制EDN1表現和我們觀察到在肝癌病人中EDN1和miR-1為負關聯性。我們的研究意味著EDN1於肝癌生成過程中扮演重要角色並受到miR-1的調控。
我們的長期目標是要了解肝癌的分子機制,並制定對肝癌的治療方法。利用斑馬魚慢性肝病肝癌模式作為藥物篩選平台,藉由化學藥品庫,和斑馬魚動物模式的具體工具,我們希望找出針對HBx蛋白和其他致癌因素所造成慢性肝病及肝癌預防和治療的方法。總結而論,通過使用斑馬魚癌症模式,我們不僅可以從事分子機制研究,也可用來篩選治療癌症的小分子藥物。所建構的斑馬魚癌症模型,將為台灣的肝癌轉譯研究提供合作平台。
摘要(英) The liver is the largest organ in the body; it regulates many physiological functions such as lipid and carbohydrate synthesis, transformation, detoxification, excretion and storage functions. Previous studies have demonstrated liver development mechanisms are highly conserved in vertebrate. Identification of genes involved in the formation of the liver and liver diseases regulatory pathways provide diagnostic and therapeutic foundation. Hepatocellular carcinoma (HCC) is a chronic progressive process, from chronic inflammation, to steatosis, fibrosis and cirrhosis eventually developed into liver cancer. Hepatitis B virus (HBV) infection is a major risk factor in liver cancer. Hepatitis B virus X antigen (HBx protein) can enhance colony formation and cell transformation in vitro cell lines, and can induce liver cancer in mice. Human cancers including liver cancer often associated with p53 mutations, and aflatoxin (AFB1) is a very common carcinogenic factor. Using albumin promoter driven expression of HBx protein in a mouse model, I have shown up-regulation of four common regulators including Src, Edn1, Bmp4, and Bmp7 are associated with HCC formation. Because of the many advantages of zebrafish, the zebrafish has become an emerging model for human diseases; zebrafish animal models provide an in-vivo model for test the oncogenicity of candidate genes, and a high throughput drug screening platform.
In this dissertation, I focus on three parts: first, using transgenic zebrafish to investigate the synergistic effect between HBx protein and aflatoxin on liver disease and cancer formation. Second, by establishing HBx transgenic fish in p53 mutant background, and src transgenic fish, explore the role of HBx, src and p53 mutant in the formation of HCC and their synergy. Third, through edn1 transgenic fish, discover the role of edn1 in hepatocarcinogenesis.
I found that HBx and AFB1 synergistically promoted steatosis as indicated by histopathological examinations and the increased expression of lipogenic factors, enzymes, and genes related to lipid metabolism. Moreover, treatment of AFB1 in HBx transgenic fish accelerated the development of liver hyperplasia and enhanced the expression of cell cycle related genes. PCNA was co-localized with active caspase 3 protein expression in HBx zebrafish liver samples and human HBV positive HCC samples by double fluorescence immunostaining. Finally, I found that in human patients with liver disease, the significant glycogen accumulation in the inflammation, cirrhosis stage, and all cases of hepatocellular and cholangiocellular carcinoma showed a moderate cytoplasmic accumulation of glycogen. Our data demonstrated a synergistic effect of AFB1 and HBx on the regulation of lipid metabolism related genes and cell cycle/division-related genes which might contribute to enhanced steatosis and hyperplasia at 5.75 months.
Liver-specific expression of HBx in wild-type zebrafish caused steatosis, fibrosis and glycogen accumulation. However, HBx induced tumorigenesis was observed only in p53 mutant fish in association with up-regulation and activation of src tyrosine kinase pathway. Furthermore, overexpression of src in the p53 mutant zebrafish also caused hyperplasia, HCC, and sarcomatoid HCC, which is accompanied with increased levels of the signaling proteins p-erk, p-akt, myc, jnk1 and vegf. Increased expression levels of lipogenic factors and the genes involved in lipid metabolism and glycogen storage were detected at the earlier stage of hepatocarcinogenesis of the HBx and src transgenic zebrafish. Up-regulation of the molecules in cell cycle, tumor progression and other molecular hallmarks of human liver cancer were found at later stages of both the HBx and src transgenic in the p53 mutant zebrafish. Together, our study demonstrates that HBx and src overexpression in the p53 mutant both induced hepatocarcinogenesis in zebrafish, which both mimic human HCC formation and provide potential in vivo platforms for drug screening to find therapy for human liver cancer.
Liver-specific edn1 expression caused steatosis, fibrosis, glycogen accumulation, bile duct dilation, hyperplasia, and HCC in zebrafish. Overexpression of EDN1 in 293T cells enhanced cell migration in xenotransplantation assays, and was accompanied by the up-regulation of migration related genes. Lipid metabolism-related genes were up-regulated at five months, may be related to the formation of fatty liver. The cell cycle, proliferation, tumor metastasis-related genes were up-regulated at 11-month, correlated to the formation of hyperplasia and HCC. Using xenotransplantation method, I found stable overexpression EDN1 in 293T cells can enhance cell migration. Using tissue array of ten different malignant human tumors, I found EDN1 up-regulated in breast cancer, brain cancer, liver cancer, prostate cancer and kidney cancer, and down-regulated in stomach cancer. Additionally, miR-1 was found to inhibit the expression of EDN1, and I observed an inverse correlation between EDN1 and miR-1 in HCC patients. In conclusion, our data suggest that EDN1 plays an important role in HCC progression and is regulated by miR-1.
Our long term goal is to understand the molecular mechanisms of liver cancer, and the development the therapeutic means for liver cancer treatment. The use of zebrafish as a model of chronic liver disease and HCC can be used as drug screening platform. With chemical libraries and zebrafish animal models, I hope to find out prevention and treatment method for liver disease and liver cancer induced by HBx protein and other carcinogenic factors. Our findings imply that, through the use of zebrafish cancer model, I can not only engage molecular mechanisms, I can also use it to screen small molecule drugs to treat cancer. The established transgenic zebrafish liver disease and cancer models should provide a cooperation platform for the translational research of liver cancer study in Taiwan.
關鍵字(中) ★ B型肝炎病毒X抗原
★ 黃麴毒素
★ p53突變
★ src
★ edn1
★ 斑馬魚
關鍵字(英) ★ HBx
★ AFB1
★ p53 mutant
★ src
★ edn1
★ zebrafish
論文目次 Declaration..........................................................................................................................I
Acknowledgements............................................................................................................II
Abbreviation......................................................................................................................III
Abstract (Chinese).............................................................................................................IV
Abstract (English).............................................................................................................VI
Table of Contents..............................................................................................................IX
List of tables and figures................................................................................................XIII
Chapter I Introduction
I-1 Overall background.......................................................................................................1
I-2 Liver disease and hepatocarcinogenesis.......................................................................2
I-3 Genetic alterations in hepatocellular carcinoma...........................................................3
I-4 Alterations in the p53 gene...........................................................................................4
I-5 Hepatocarcinogenesis related to the HBV x antigen....................................................5
I-5-1 HBx enhances genomic instability .....................................................................5
I-5-2 Signal transduction pathways affected by HBx..................................................6
I-5-3 Transactivation of cellular genes........................................................................6
I-5-4 Physical binding and functional inactivation of the p53 cellular tumor
suppressor protein..............................................................................................7
I-5-5 Epigenomic changes associated with HBx .........................................................7
I-6 A zebrafish animal model for the study of liver diseases and HCC.............................8
I-6-1 New transgenic technology for studying HCC using zebrafish..........................9
I-6-2 Studying metastasis in zebrafish using the xenotransplantation method..........10
I-7 Future perspectives.....................................................................................................11
I-8 Tables..........................................................................................................................13
I-9 Figures........................................................................................................................14
Chapter II Materials and Methods
II-1 Zebrafish maintenance..............................................................................................15
II-2 Generation of transgenic zebrafish using the Tol2 transposon system.....................15
II-3 Microinjection...........................................................................................................15
II-4 AFB1 treatment, liver tissue collection, and paraffin sectioning..............................16
II-5 Histological and immunohistochemistry analyses.....................................................16
II-5-1 Immunohistochemistry.....................................................................................16
II-5-2 Sirius red staining.............................................................................................17
II-5-3 TUNEL assay....................................................................................................17
II-5-4 Periodic Acid-Schiff Stain................................................................................18
II-5-5 Oil red staining.................................................................................................18
II-6 Human tissue microarray...........................................................................................18
II-7 RNA isolation and quantitative RT-PCR...................................................................19
II-8 Western blot analysis..................................................................................................20
II-9 miRNA in situ hybridization......................................................................................20
II-10 Zebrafish tumor xenograft metastasis assays...........................................................21
II-11 Statistics...................................................................................................................21
Chapter III Hepatitis B virus X antigen and Aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish
III-1 Abstract....................................................................................................................22
III-2 Introduction...............................................................................................................22
III-3 Results.......................................................................................................................24
III-3-1 Expression of the HBx-mCherry fusion protein and formation of AFB1
-DNA adducts in transgenic fish.......................................................................24
III-3-2 Histopathological examination of synergistic effect of HBx and AFB1
in the transgenic zebrafish model......................................................................25
III-3-3 Glycogen accumulation occurred in the inflammation stage and
reappeared in the hyperplasia stage ..................................................................26
III-3-4 Synergistic effect of HBx and AFB1 on the expression of lipogenic
factors and cell cycle-related genes...................................................................27
III-3-5 Co-localization of PCNA with caspase 3 in HBx zebrafish liver
samples and human HBV positive HCC samples.............................................30
III-4 Discussion.................................................................................................................30
III-5 Tables........................................................................................................................33
III-6 Figures.......................................................................................................................36
Chapter IV Liver-specific expression of HBx and its downstream effector-src in p53 mutant drives hepatocarcinogenesis in transgenic zebrafish
IV-1 Abstract....................................................................................................................48
IV-2 Introduction..............................................................................................................48
IV-3 Results......................................................................................................................50
IV-3-1 Liver-specific expression of HBx-mCherry fusion protein in the
transgenic zebrafish..........................................................................................50
IV-3-2 A synergistic interaction between HBx and the p53 mutation facilitates
hyperplasia and HCC formation in the liver of transgenic fish........................51
IV-3-3 Early pathological alterations in fibrosis, glycogen accumulation,
apoptosis and PCNA staining in the liver of HBx transgenic fish in p53
mutant...............................................................................................................53
IV-3-4 Up-regulation of lipogenic factors, fibrosis markers, cell cycle related
genes, tumor markers and metastasis-associated genes in HBx transgenic
fish in p53 mutant............................................................................................54
IV-3-5 Differential activation of src pathways in the HBx transgenic p53 mutant
zebrafish developed to hyperplasia and HCC..................................................55
IV-3-6 Generation of stable liver-specific src transgenic zebrafish in p53 mutant...56
IV-3-7 Src transgenic in p53 mutant zebrafish model shows good correlation with
HBx induced HCC in p53 mutant zebrafish on hepatocarcinogenesis........56
IV-3-8 Enhanced tumor incidence and onset in double HBx and src transgenic
zebrafish...........................................................................................................57
IV-3-9 Activation of p-erk, p-akt, myc, vegf and jnk1 in the liver tumors of the src
transgenic zebrafish of p53 mutant..................................................................57
IV-3-10 The Penetrance of HBx and src in p53 mutant background induced
chronic inflammation, steatosis, hyperplasia, dysplasia and HCC...................58
IV-4 Discussion................................................................................................................58
IV-5 Tables.......................................................................................................................62
IV-6 Figures.... .................................................................................................................68
Chapter V Endothelin 1 induced hepatocarcinogenesis in transgenic zebrafish and promotes cell migration
V-1 Abstract......................................................................................................................92
V-2 Introduction................................................................................................................92
V-3 Results........................................................................................................................94
V-3-1 Liver-specific edn1 transgenic zebrafish..........................................................94
V-3-2 Histopathological examination of edn1 transgenic zebrafish .........................95
V-3-3 Pathological alterations in the livers of the edn1 transgenic zebrafish ...........95
V-3-4 Up-regulation of lipid metabolism, fibrosis markers, cell cycle related genes,
tumor markers and metastasis-associated genes in edn1 transgenic fish ........96
V-3-5 Screening for EDN1 protein expression in multiple samples of normal and
cancerous tissue................................................................................................97
V-3-6 Stable overexpression EDN1 in 293T cell increase in-cell migration ability
in xenotransplantation assay.............................................................................97
V-3-7 Association of EDN1 and miR-1 expression in patients with HCC.................98
V-4 Discussion.................................................................................................................98
V5-5 Tables.....................................................................................................................101
V-6 Figures.....................................................................................................................103
Chapter VI Conclusion and future perspective
VI-1 Summary................................................................................................................114
VI-2 Figures ...................................................................................................................118
References ......................................................................................................................119
Publications ....................................................................................................................136
參考文獻 Aguilar, F., Harris, C. C., Sun, T., Hollstein, M. and Cerutti, P. (1994). Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264, 1317-9.
Aguilar, F., Hussain, S. P. and Cerutti, P. (1993). Aflatoxin B1 induces the transversion of G-->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci U S A 90, 8586-90.
Akriviadis, E. A., Llovet, J. M., Efremidis, S. C., Shouval, D., Canelo, R., Ringe, B. and Meyers, W. C. (1998). Hepatocellular carcinoma. Br J Surg 85, 1319-31.
Ali, H., Loizidou, M., Dashwood, M., Savage, F., Sheard, C. and Taylor, I. (2000). Stimulation of colorectal cancer cell line growth by ET-1 and its inhibition by ET(A) antagonists. Gut 47, 685-8.
Andre, M., Ando, S., Ballagny, C., Durliat, M., Poupard, G., Briancon, C. and Babin, P. J. (2000). Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol 44, 249-52.
Asham, E., Shankar, A., Loizidou, M., Fredericks, S., Miller, K., Boulos, P. B., Burnstock, G. and Taylor, I. (2001). Increased endothelin-1 in colorectal cancer and reduction of tumour growth by ET(A) receptor antagonism. Br J Cancer 85, 1759-63.
Bailey, G. S., Williams, D. E. and Hendricks, J. D. (1996). Fish models for environmental carcinogenesis: the rainbow trout. Environ Health Perspect 104 Suppl 1, 5-21.
Beasley, R. P., Hwang, L. Y., Lin, C. C. and Chien, C. S. (1981). Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 2, 1129-33.
Benn, J. and Schneider, R. J. (1994). Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A 91, 10350-4.
Benn, J., Su, F., Doria, M. and Schneider, R. J. (1996). Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 70, 4978-85.
Bennett, J. W. and Klich, M. (2003). Mycotoxins. Clin Microbiol Rev 16, 497-516.
Berghmans, S., Murphey, R. D., Wienholds, E., Neuberg, D., Kutok, J. L., Fletcher, C. D., Morris, J. P., Liu, T. X., Schulte-Merker, S., Kanki, J. P. et al. (2005). tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102, 407-12.
Boorman, G. A., Botts, S., Bunton, T. E., Fournie, J. W., Harshbarger, J. C., Hawkins, W. E., Hinton, D. E., Jokinen, M. P., Okihiro, M. S. and Wolfe, M. J. (1997). Diagnostic criteria for degenerative, inflammatory, proliferative nonneoplastic and neoplastic liver lesions in medaka (Oryzias latipes): consensus of a National Toxicology Program Pathology Working Group. Toxicol Pathol 25, 202-10.
Bosch, F. X., Ribes, J. and Borras, J. (1999). Epidemiology of primary liver cancer. Semin Liver Dis 19, 271-85.
Bosch, F. X., Ribes, J., Diaz, M. and Cleries, R. (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
Boyault, S., Rickman, D. S., de Reynies, A., Balabaud, C., Rebouissou, S., Jeannot, E., Herault, A., Saric, J., Belghiti, J., Franco, D. et al. (2007). Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42-52.
Brechot, C. (2004). Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127, S56-61.
Bressac, B., Kew, M., Wands, J. and Ozturk, M. (1991). Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429-31.
Buendia, M. A. (2000). Genetics of hepatocellular carcinoma. Semin Cancer Biol 10, 185-200.
Chan, T. M., Chao, C. H., Wang, H. D., Yu, Y. J. and Yuh, C. H. (2009). Functional analysis of the evolutionarily conserved cis-regulatory elements on the sox17 gene in zebrafish. Dev Biol 326, 456-70.
Chen, C. J., Yu, M. W. and Liaw, Y. F. (1997). Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 12, S294-308.
Cheng, A. S., Wong, N., Tse, A. M., Chan, K. Y., Chan, K. K., Sung, J. J. and Chan, H. L. (2007). RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer letters 253, 43-52.
Chu, J. and Sadler, K. C. (2009). New school in liver development: lessons from zebrafish. Hepatology 50, 1656-63.
Cougot, D., Neuveut, C. and Buendia, M. A. (2005). HBV induced carcinogenesis. J Clin Virol 34 Suppl 1, S75-8.
Culp, P., Nusslein-Volhard, C. and Hopkins, N. (1991). High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci U S A 88, 7953-7.
Datta, J., Kutay, H., Nasser, M. W., Nuovo, G. J., Wang, B., Majumder, S., Liu, C. G., Volinia, S., Croce, C. M., Schmittgen, T. D. et al. (2008). Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68, 5049-58.
Deiters, A. and Yoder, J. A. (2006). Conditional transgene and gene targeting methodologies in zebrafish. Zebrafish 3, 415-29.
Denovan-Wright, E. M., Pierce, M. and Wright, J. M. (2000). Nucleotide sequence of cDNA clones coding for a brain-type fatty acid binding protein and its tissue-specific expression in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492, 221-6.
Dovey, M., White, R. M. and Zon, L. I. (2009). Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6, 397-404.
Du, X. Y., Huang, J., Xu, L. Q., Tang, D. F., Wu, L., Zhang, L. X., Pan, X. L., Chen, W. Y., Zheng, L. P. and Zheng, Y. H. (2012). The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways. Reprod Biol Endocrinol 10, 58.
Edamoto, Y., Hara, A., Biernat, W., Terracciano, L., Cathomas, G., Riehle, H. M., Matsuda, M., Fujii, H., Scoazec, J. Y. and Ohgaki, H. (2003). Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer 106, 334-41.
El-Serag, H. B. (2002). Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35, S72-8.
El-Serag, H. B., Davila, J. A., Petersen, N. J. and McGlynn, K. A. (2003). The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 139, 817-23.
El-Serag, H. B., Mason, A. C. and Key, C. (2001). Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States. Hepatology 33, 62-5.
El-Serag, H. B. and Rudolph, K. L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-76.
Etchin, J., Kanki, J. P. and Look, A. T. (2011). Zebrafish as a model for the study of human cancer. Methods Cell Biol 105, 309-37.
Feitsma, H. and Cuppen, E. (2008). Zebrafish as a cancer model. Mol Cancer Res 6, 685-94.
Gadea, A., Schinelli, S. and Gallo, V. (2008). Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28, 2394-408.
Gatza, M. L., Chandhasin, C., Ducu, R. I. and Marriott, S. J. (2005). Impact of transforming viruses on cellular mutagenesis, genome stability, and cellular transformation. Environ Mol Mutagen 45, 304-25.
Goessling, W., North, T. E. and Zon, L. I. (2007). Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nat Methods 4, 551-3.
Grant, K., Knowles, J., Dawas, K., Burnstock, G., Taylor, I. and Loizidou, M. (2007). Mechanisms of endothelin 1-stimulated proliferation in colorectal cancer cell lines. Br J Surg 94, 106-12.
Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell 144, 646-674.
He, S., Krens, S. G., Zhan, H., Gong, Z., Hogendoorn, P. C., Spaink, H. P. and Snaar-Jagalska, B. E. (2011). A DeltaRaf1-ER-inducible oncogenic zebrafish liver cell model identifies hepatocellular carcinoma signatures. J Pathol 225, 19-28.
Her, G. M., Chiang, C. C., Chen, W. Y. and Wu, J. L. (2003a). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538, 125-33.
Her, G. M., Hsu, C. C., Hong, J. R., Lai, C. Y., Hsu, M. C., Pang, H. W., Chan, S. K. and Pai, W. Y. (2011). Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta 1811, 536-48.
Her, G. M., Pai, W. Y., Lai, C. Y., Hsieh, Y. W. and Pang, H. W. (2013). Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta 1831, 1037-51.
Her, G. M., Yeh, Y. H. and Wu, J. L. (2003b). 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Dev Dyn 227, 347-56.
Hiruma, S., Gopalan-Kriczky, P., Qin, G., Gaughan, J. P. and Lotlikar, P. D. (2001). Differential effects of acetaminophen pretreatment on hepatic aflatoxin B(1)-DNA binding, cellular proliferation, and aflatoxin B1-induced hepatic foci in rats and hamsters. Cancer Lett 170, 117-24.
Hobbie, K. R., DeAngelo, A. B., George, M. H. and Law, J. M. (2012). Neoplastic and nonneoplastic liver lesions induced by dimethylnitrosamine in Japanese medaka fish. Vet Pathol 49, 372-85.
Honda, K., Sbisa, E., Tullo, A., Papeo, P. A., Saccone, C., Poole, S., Pignatelli, M., Mitry, R. R., Ding, S., Isla, A. et al. (1998). p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation. Br J Cancer 77, 776-82.
Hoshida, Y., Nijman, S. M., Kobayashi, M., Chan, J. A., Brunet, J. P., Chiang, D. Y., Villanueva, A., Newell, P., Ikeda, K., Hashimoto, M. et al. (2009). Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69, 7385-92.
Hoshida, Y., Toffanin, S., Lachenmayer, A., Villanueva, A., Minguez, B. and Llovet, J. M. (2010). Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 30, 35-51.
Howe, K. Clark, M. D. Torroja, C. F. Torrance, J. Berthelot, C. Muffato, M. Collins, J. E. Humphray, S. McLaren, K. Matthews, L. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Hsia, C. C., Kleiner, D. E., Jr., Axiotis, C. A., Di Bisceglie, A., Nomura, A. M., Stemmermann, G. N. and Tabor, E. (1992). Mutations of p53 gene in hepatocellular carcinoma: roles of hepatitis B virus and aflatoxin contamination in the diet. J Natl Cancer Inst 84, 1638-41.
Hsu, I. C., Metcalf, R. A., Sun, T., Welsh, J. A., Wang, N. J. and Harris, C. C. (1991). Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350, 427-8.
Hussain, S. P., Schwank, J., Staib, F., Wang, X. W. and Harris, C. C. (2007). TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166-76.
Ikegami, T. (2009). Transforming growth factor-beta signaling and liver cancer stem cell. Hepatol Res 39, 847-9.
Ikegawa, R., Matsumura, Y., Takaoka, M. and Morimoto, S. (1990). Evidence for pepstatin-sensitive conversion of porcine big endothelin-1 to endothelin-1 by the endothelial cell extract. Biochem Biophys Res Commun 167, 860-6.
Irby, R. B. and Yeatman, T. J. (2000). Role of Src expression and activation in human cancer. Oncogene 19, 5636-42.
Isobe, M., Emanuel, B. S., Givol, D., Oren, M. and Croce, C. M. (1986). Localization of gene for human p53 tumour antigen to band 17p13. Nature 320, 84-5.
Ito, Y., Kawakatsu, H., Takeda, T., Sakon, M., Nagano, H., Sakai, T., Miyoshi, E., Noda, K., Tsujimoto, M., Wakasa, K. et al. (2001). Activation of c-Src gene product in hepatocellular carcinoma is highly correlated with the indices of early stage phenotype. J Hepatol 35, 68-73.
Jain, S., Singhal, S., Lee, P. and Xu, R. (2010). Molecular genetics of hepatocellular neoplasia. Am J Transl Res 2, 105-18.
Jeannot, E., Boorman, G. A., Kosyk, O., Bradford, B. U., Shymoniak, S., Tumurbaatar, B., Weinman, S. A., Melnyk, S. B., Tryndyak, V., Pogribny, I. P. et al. (2011). Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice. Int J Cancer.
Jung, D. W., Oh, E. S., Park, S. H., Chang, Y. T., Kim, C. H., Choi, S. Y. and Williams, D. R. (2012). A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol Biosyst.
Kang-Park, S., Im, J. H., Lee, J. H. and Lee, Y. I. (2006). PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res.
Kawakami, K., Shima, A. and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-8.
Kew, M. C. (2003). Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int 23, 405-9.
Kew, M. C. (2011
). Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 26 Suppl 1, 144-52.
Kim, C. M., Koike, K., Saito, I., Miyamura, T. and Jay, G. (1991). HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317-20.
Kitamura, S., Tatsuta, M., Yamamoto, R., Iishi, H., Kaji, I., Kasugai, H., Okuda, S. and Ishiguro, S. (1993). Prognostic value of periodic Acid-schiff (pas) staining of fine-needle aspirates from patients with primary hepatocellular-carcinoma. Int J Oncol 3, 245-51.
Klein, N. P. and Schneider, R. J. (1997). Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol 17, 6427-36.
Koike, K., Shirakata, Y., Yaginuma, K., Arii, M., Takada, S., Nakamura, I., Hayashi, Y., Kawada, M. and Kobayashi, M. (1989). Oncogenic potential of hepatitis B virus. Mol Biol Med 6, 151-60.
Kojima, K. and Nihei, Z. (1995). Expression of endothelin-1 immunoreactivity in breast cancer. Surg Oncol 4, 309-15.
Komuro, I., Kurihara, H., Sugiyama, T., Yoshizumi, M., Takaku, F. and Yazaki, Y. (1988). Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 238, 249-52.
Kung, J. W., Currie, I. S., Forbes, S. J. and Ross, J. A. (2010). Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010, 984248.
Kwan, K. M., Fujimoto, E., Grabher, C., Mangum, B. D., Hardy, M. E., Campbell, D. S., Parant, J. M., Yost, H. J., Kanki, J. P. and Chien, C. B. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236, 3088-99.
Lam, S. H., Wu, Y. L., Vega, V. B., Miller, L. D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K. R., Lee, S., Mathavan, S. et al. (2006a). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24, 73-5.
Lam, S. H., Wu, Y. L., Vega, V. B., Miller, L. D., Spitsbergen, J., Tong, Y., Zhan, H. Q., Govindarajan, K. R., Lee, S., Mathavan, S. et al. (2006b). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nature Biotechnology 24, 73-75.
Lara-Pezzi, E., Roche, S., Andrisani, O. M., Sanchez-Madrid, F. and Lopez-Cabrera, M. (2001). The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene 20, 3323-31.
Lau, G. M., Yu, G. L., Gelman, I. H., Gutowski, A., Hangauer, D. and Fang, J. W. (2009). Expression of Src and FAK in hepatocellular carcinoma and the effect of Src inhibitors on hepatocellular carcinoma in vitro. Dig Dis Sci 54, 1465-74.
Laurent-Puig, P., Legoix, P., Bluteau, O., Belghiti, J., Franco, D., Binot, F., Monges, G., Thomas, G., Bioulac-Sage, P. and Zucman-Rossi, J. (2001). Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120, 1763-73.
Laurent-Puig, P. and Zucman-Rossi, J. (2006). Genetics of hepatocellular tumors. Oncogene 25, 3778-86.
Lee, J. O., Kwun, H. J., Jung, J. K., Choi, K. H., Min do, S. and Jang, K. L. (2005). Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene 24, 6617-25.
Lee, M. N., Jung, E. Y., Kwun, H. J., Jun, H. K., Yu, D. Y., Choi, Y. H. and Jang, K. L. (2002). Hepatitis C virus core protein represses the p21 promoter through inhibition of a TGF-beta pathway. J Gen Virol 83, 2145-51.
Lee, Y. H. and Yun, Y. (1998). HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem 273, 25510-5.
Lemaigre, F. and Zaret, K. S. (2004). Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 14, 582-90.
Lemmon, M. A. and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141, 1117-34.
Levine, A. J., Momand, J. and Finlay, C. A. (1991). The p53 tumour suppressor gene. Nature 351, 453-6.
Levy, L., Renard, C. A., Wei, Y. and Buendia, M. A. (2002). Genetic alterations and oncogenic pathways in hepatocellular carcinoma. Ann N Y Acad Sci 963, 21-36.
Li, C. H., Wang, Y. J., Dong, W., Xiang, S., Liang, H. F., Wang, H. Y., Dong, H. H., Chen, L. and Chen, X. P. (2011). Hepatic oval cell lines generate hepatocellular carcinoma following transfection with HBx gene and treatment with aflatoxin B1 in vivo. Cancer Lett 311, 1-10.
Li, D., Yang, P., Li, H., Cheng, P., Zhang, L., Wei, D., Su, X., Peng, J., Gao, H., Tan, Y. et al. (2012a). MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci 91, 440-7.
Li, Z., Huang, X., Zhan, H., Zeng, Z., Li, C., Spitsbergen, J. M., Meierjohann, S., Schartl, M. and Gong, Z. (2012b). Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 56, 419-25.
Li, Z., Zheng, W., Wang, Z., Zeng, Z., Zhan, H., Li, C., Zhou, L., Yan, C., Spitsbergen, J. M. and Gong, Z. (2013). A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Dis Model Mech 6, 414-23.
Lian, M., Liu, Y., Yu, S. Z., Qian, G. S., Wan, S. G. and Dixon, K. R. (2006). Hepatitis B virus x gene and cyanobacterial toxins promote aflatoxin B1-induced hepatotumorigenesis in mice. World J Gastroenterol 12, 3065-72.
Lieschke, G. J. and Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353-67.
Lin, T. Y., Lee, C. S., Chen, K. M. and Chen, C. C. (1987). Role of surgery in the treatment of primary carcinoma of the liver: a 31-year experience. Br J Surg 74, 839-42.
Liu, W., Chen, J. R., Hsu, C. H., Li, Y. H., Chen, Y. M., Lin, C. Y., Huang, S. J., Chang, Z. K., Chen, Y. C., Lin, C. H. et al. (2012a). A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology.
Liu, W., Chen, J. R., Hsu, C. H., Li, Y. H., Chen, Y. M., Lin, C. Y., Huang, S. J., Chang, Z. K., Chen, Y. C., Lin, C. H. et al. (2012b). A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56, 2268-76.
Lu, J. W., Chang, J. G., Yeh, K. T., Chen, R. M., Tsai, J. J. and Hu, R. M. (2011a). Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem 113, 833-8.
Lu, J. W., Hsia, Y., Tu, H. C., Hsiao, Y. C., Yang, W. Y., Wang, H. D. and Yuh, C. H. (2011b). Liver development and cancer formation in zebrafish. Birth Defects Res C Embryo Today 93, 157-72.
Lu, J. W., Hsia, Y., Yang, W. Y., Lin, Y. I., Li, C. C., Tsai, T. F., Chang, K. W., Shieh, G. S., Tsai, S. F., Wang, H. D. et al. (2012). Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 33, 209-19.
Lu, J. W., Yang, W. Y., Lin, Y. M., Jin, S. L. and Yuh, C. H. (2013). Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem.
Luber, B., Lauer, U., Weiss, L., Hohne, M., Hofschneider, P. H. and Kekule, A. S. (1993). The hepatitis B virus transactivator HBx causes elevation of diacylglycerol and activation of protein kinase C. Res Virol 144, 311-21.
Luyendyk, J. P., Copple, B. L., Barton, C. C., Ganey, P. E. and Roth, R. A. (2003). Augmentation of aflatoxin B1 hepatotoxicity by endotoxin: involvement of endothelium and the coagulation system. Toxicol Sci 72, 171-81.
Marques, I. J., Weiss, F. U., Vlecken, D. H., Nitsche, C., Bakkers, J., Lagendijk, A. K., Partecke, L. I., Heidecke, C. D., Lerch, M. M. and Bagowski, C. P. (2009). Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9, 128.
Marrero, C. R. and Marrero, J. A. (2007). Viral hepatitis and hepatocellular carcinoma. Arch Med Res 38, 612-20.
Matsuura, A., Yamochi, W., Hirata, K., Kawashima, S. and Yokoyama, M. (1998). Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression. Hypertension 32, 89-95.
McGlynn, K. A. and London, W. T. (2005). Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19, 3-23.
Morgan, T. R., Mandayam, S. and Jamal, M. M. (2004). Alcohol and hepatocellular carcinoma. Gastroenterology 127, S87-96.
Murakami, Y., Hayashi, K., Hirohashi, S. and Sekiya, T. (1991). Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas. Cancer Res 51, 5520-5.
Murata, M., Matsuzaki, K., Yoshida, K., Sekimoto, G., Tahashi, Y., Mori, S., Uemura, Y., Sakaida, N., Fujisawa, J., Seki, T. et al. (2009). Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 49, 1203-17.
Nakamura, T. and Nishina, H. (2009). Liver development: lessons from knockout mice and mutant fish. Hepatol Res 39, 633-44.
Nakamuta, M., Ohashi, M., Tabata, S., Tanabe, Y., Goto, K., Naruse, M., Naruse, K., Hiroshige, K. and Nawata, H. (1993). High plasma concentrations of endothelin-like immunoreactivities in patients with hepatocellular carcinoma. Am J Gastroenterol 88, 248-52.
Nelson, J. B., Hedican, S. P., George, D. J., Reddi, A. H., Piantadosi, S., Eisenberger, M. A. and Simons, J. W. (1995). Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1, 944-9.
Neuveut, C., Wei, Y. and Buendia, M. A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol 52, 594-604.
Ng, S. A. and Lee, C. (2011). Hepatitis B virus X gene and hepatocarcinogenesis. Journal of gastroenterology 46, 974-90.
Nguyen, A. T., Emelyanov, A., Koh, C. H., Spitsbergen, J. M., Lam, S. H., Mathavan, S., Parinov, S. and Gong, Z. (2011). A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech 4, 801-13.
Nguyen, A. T., Emelyanov, A., Koh, C. H., Spitsbergen, J. M., Parinov, S. and Gong, Z. (2012). An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5, 63-72.
Nicoli, S., Ribatti, D., Cotelli, F. and Presta, M. (2007). Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67, 2927-31.
Noh, E. J., Jung, H. J., Jeong, G., Choi, K. S., Park, H. J., Lee, C. H. and Lee, J. S. (2004). Subcellular localization and transcriptional repressor activity of HBx on p21(WAF1/Cip1) promoter is regulated by ERK-mediated phosphorylation. Biochem Biophys Res Commun 319, 738-45.
Norton, P. A., Reis, H. M., Prince, S., Larkin, J., Pan, J., Liu, J., Gong, Q., Zhu, M. and Feitelson, M. A. (2004). Activation of fibronectin gene expression by hepatitis B virus x antigen. J Viral Hepat 11, 332-41.
Oikawa, T., Kushuhara, M., Ishikawa, S., Hitomi, J., Kono, A., Iwanaga, T. and Yamaguchi, K. (1994). Production of endothelin-1 and thrombomodulin by human pancreatic cancer cells. Br J Cancer 69, 1059-64.
Okada, K., Miyazaki, Y., Takada, J., Matsuyama, K., Yamaki, T. and Yano, M. (1990). Conversion of big endothelin-1 by membrane-bound metalloendopeptidase in cultured bovine endothelial cells. Biochem Biophys Res Commun 171, 1192-8.
Pang, R., Tse, E. and Poon, R. T. (2006). Molecular pathways in hepatocellular carcinoma. Cancer Lett 240, 157-69.
Park, N. H., Song, I. H. and Chung, Y. H. (2007). Molecular Pathogenesis of Hepatitis-B-virus-associated Hepatocellular Carcinoma. Gut Liver 1, 101-17.
Park, S. S., Eom, Y. W., Kim, E. H., Lee, J. H., Min, D. S., Kim, S., Kim, S. J. and Choi, K. S. (2004). Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. Oncogene 23, 6272-81.
Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer 94, 153-6.
Passeri, M. J., Cinaroglu, A., Gao, C. and Sadler, K. C. (2009). Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49, 443-52.
Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., Berghmans, S., Mayhall, E. A., Traver, D., Fletcher, C. D. et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15, 249-54.
Pedram, A., Razandi, M., Hu, R. M. and Levin, E. R. (1997). Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J Biol Chem 272, 17097-103.
Peng, Z., Zhang, Y., Gu, W., Wang, Z., Li, D., Zhang, F., Qiu, G. and Xie, K. (2005). Integration of the hepatitis B virus X fragment in hepatocellular carcinoma and its effects on the expression of multiple molecules: a key to the cell cycle and apoptosis. Int J Oncol 26, 467-73.
Pfab, T., Stoltenburg-Didinger, G., Trautner, C., Godes, M., Bauer, C. and Hocher, B. (2004). The endothelin system in Morris hepatoma-7777: an endothelin receptor antagonist inhibits growth in vitro and in vivo. Br J Pharmacol 141, 215-22.
Puisieux, A. and Ozturk, M. (1997). TP53 and hepatocellular carcinoma. Pathol Biol (Paris) 45, 864-70.
Rekha, R. D., Amali, A. A., Her, G. M., Yeh, Y. H., Gong, H. Y., Hu, S. Y., Lin, G. H. and Wu, J. L. (2008). Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology 243, 11-22.
Roberts, L. R. (2008). Sorafenib in liver cancer--just the beginning. N Engl J Med 359, 420-2.
Roberts, L. R. and Gores, G. J. (2005). Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 25, 212-25.
Robinson, W. S. (1992). The role of hepatitis B virus in the development of primary hepatocellular carcinoma: Part I. J Gastroenterol Hepatol 7, 622-38.
Rosano, L., Varmi, M., Salani, D., Di Castro, V., Spinella, F., Natali, P. G. and Bagnato, A. (2001). Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res 61, 8340-6.
Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J. and Hopkins, N. (2005). A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561-72.
Sanchez-Bailon, M. P., Calcabrini, A., Gomez-Dominguez, D., Morte, B., Martin-Forero, E., Gomez-Lopez, G., Molinari, A., Wagner, K. U. and Martin-Perez, J. (2012). Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal 24, 1276-86.
Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., Fujita, M., Tokino, T. et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24, 245-50.
Schilling, T., Kairat, A., Melino, G., Krammer, P. H., Stremmel, W., Oren, M. and Muller, M. (2010). Interference with the p53 family network contributes to the gain of oncogenic function of mutant p53 in hepatocellular carcinoma. Biochem Biophys Res Commun 394, 817-23.
Seeff, L. B. and Hoofnagle, J. H. (2006). Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity. Oncogene 25, 3771-7.
Seifer, M., Hohne, M., Schaefer, S. and Gerlich, W. H. (1991). In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. J Hepatol 13 Suppl 4, S61-5.
Sell, S. and Leffert, H. L. (2008). Liver cancer stem cells. J Clin Oncol 26, 2800-5.
Shepard, C. W., Simard, E. P., Finelli, L., Fiore, A. E. and Bell, B. P. (2006). Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28, 112-25.
Shieh, Y. S., Chang, Y. S., Hong, J. R., Chen, L. J., Jou, L. K., Hsu, C. C. and Her, G. M. (2010). Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta 1801, 721-30.
Shields, D. J., Murphy, E. A., Desgrosellier, J. S., Mielgo, A., Lau, S. K., Barnes, L. A., Lesperance, J., Huang, M., Schmedt, C., Tarin, D. et al. (2011). Oncogenic Ras/Src cooperativity in pancreatic neoplasia. Oncogene 30, 2123-34.
Shirakata, Y., Kawada, M., Fujiki, Y., Sano, H., Oda, M., Yaginuma, K., Kobayashi, M. and Koike, K. (1989). The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn J Cancer Res 80, 617-21.
Si-Tayeb, K., Lemaigre, F. P. and Duncan, S. A. (2010). Organogenesis and development of the liver. Dev Cell 18, 175-89.
Siegel, A. B., Olsen, S. K., Magun, A. and Brown, R. S., Jr. (2010). Sorafenib: where do we go from here? Hepatology 52, 360-9.
Slagle, B. L., Lee, T. H., Medina, D., Finegold, M. J. and Butel, J. S. (1996). Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene. Mol Carcinog 15, 261-9.
Soussi, T. and Beroud, C. (2003). Significance of TP53 mutations in human cancer: a critical analysis of mutations at CpG dinucleotides. Hum Mutat 21, 192-200.
Spitsbergen, J. M. and Kent, M. L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 31 Suppl, 62-87.
Spitsbergen, J. M., Tsai, H. W., Reddy, A., Miller, T., Arbogast, D., Hendricks, J. D. and Bailey, G. S. (2000a). Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28, 705-15.
Spitsbergen, J. M., Tsai, H. W., Reddy, A., Miller, T., Arbogast, D., Hendricks, J. D. and Bailey, G. S. (2000b). Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28, 716-25.
Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L. and Klemke, R. (2007). High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104, 17406-11.
Stuart, G. W., McMurray, J. V. and Westerfield, M. (1988). Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103, 403-12.
Stuart, G. W., Vielkind, J. R., McMurray, J. V. and Westerfield, M. (1990). Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109, 577-84.
Summy, J. M. and Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22, 337-58.
Summy, J. M. and Gallick, G. E. (2006). Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 12, 1398-401.
Takaoka, M., Takenobu, Y., Miyata, Y., Ikegawa, R., Matsumura, Y. and Morimoto, S. (1990). Pepsin, an aspartic protease, converts porcine big endothelin to 21-residue endothelin. Biochem Biophys Res Commun 166, 436-42.
Tang, Y., Kitisin, K., Jogunoori, W., Li, C., Deng, C. X., Mueller, S. C., Ressom, H. W., Rashid, A., He, A. R., Mendelson, J. S. et al. (2008). Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105, 2445-50.
Tarantino, G., Saldalamacchia, G., Conca, P. and Arena, A. (2007). Non-alcoholic fatty liver disease: further expression of the metabolic syndrome. J Gastroenterol Hepatol 22, 293-303.
Taylor, A. M. and Zon, L. I. (2009). Zebrafish tumor assays: the state of transplantation. Zebrafish 6, 339-46.
Thisse, C. and Zon, L. I. (2002). Development - Organogenesis - Heart and wood formation from the zebrafish point of view. Science 295, 457-462.
Tsai, W. L. and Chung, R. T. (2010). Viral hepatocarcinogenesis. Oncogene 29, 2309-24.
Tseng, W. F., Jang, T. H., Huang, C. B. and Yuh, C. H. (2011). An evolutionarily conserved kernel of gata5, gata6, otx2 and prdm1a operates in the formation of endoderm in zebrafish. Dev Biol 357, 541-57.
Ueda, H., Ullrich, S. J., Gangemi, J. D., Kappel, C. A., Ngo, L., Feitelson, M. A. and Jay, G. (1995). Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 9, 41-7.
Ullrich, S. J., Zeng, Z. Z. and Jay, G. (1994). Transgenic mouse models of human gastric and hepatic carcinomas. Semin Cancer Biol 5, 61-8.
Ung, C. Y., Lam, S. H. and Gong, Z. (2009). Comparative transcriptome analyses revealed conserved biological and transcription factor target modules between the zebrafish and human tumors. Zebrafish 6, 425-31.
Urasaki, A., Morvan, G. and Kawakami, K. (2006). Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639-49.
van Malenstein, H., Verslype, C., Windmolders, P., van Eijsden, R., Nevens, F. and van Pelt, J. (2012). Characterization of a cell culture model for clinically aggressive hepatocellular carcinoma induced by chronic hypoxia. Cancer Lett 315, 178-88.
Wang, H. D., Yuh, C. H., Dang, C. V. and Johnson, D. L. (1995). The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol Cell Biol 15, 6720-8.
Wei, W., Huang, W., Pan, Y., Zhu, F. and Wu, J. (2006). Functional switch of viral protein HBx on cell apoptosis, transformation, and tumorigenesis in association with oncoprotein Ras. Cancer Lett.
Weinstein, B. (2002). Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol 12, 439-45.
White, R. M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C. E. et al. (2008). Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell 2, 183-189.
Wild, C. P., Jansen, L. A., Cova, L. and Montesano, R. (1993). Molecular dosimetry of aflatoxin exposure: contribution to understanding the multifactorial etiopathogenesis of primary hepatocellular carcinoma with particular reference to hepatitis B virus. Environ Health Perspect 99, 115-22.
Wild, C. P. and Turner, P. C. (2002). The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 17, 471-81.
Witsch, E., Sela, M. and Yarden, Y. (2010). Roles for growth factors in cancer progression. Physiology (Bethesda) 25, 85-101.
Wogan, G. N., Kensler, T. W. and Groopman, J. D. (2012). Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29, 249-57.
Woo, H. G., Wang, X. W., Budhu, A., Kim, Y. H., Kwon, S. M., Tang, Z. Y., Sun, Z., Harris, C. C. and Thorgeirsson, S. S. (2011a). Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology 140, 1063-70.
Woo, L. L., Egner, P. A., Belanger, C. L., Wattanawaraporn, R., Trudel, L. J., Croy, R. G., Groopman, J. D., Essigmann, J. M., Wogan, G. N. and Bouhenguel, J. T. (2011b). Aflatoxin B1-DNA adduct formation and mutagenicity in livers of neonatal male and female B6C3F1 mice. Toxicol Sci 122, 38-44.
Wu, B. K., Li, C. C., Chen, H. J., Chang, J. L., Jeng, K. S., Chou, C. K., Hsu, M. T. and Tsai, T. F. (2006). Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun 340, 916-28.
Wu, M. H., Lo, J. F., Kuo, C. H., Lin, J. A., Lin, Y. M., Chen, L. M., Tsai, F. J., Tsai, C. H., Huang, C. Y. and Tang, C. H. (2012). Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227, 3016-26.
Wu, Y. F., Fu, S. L., Kao, C. H., Yang, C. W., Lin, C. H., Hsu, M. T. and Tsai, T. F. (2008). Chemopreventive effect of silymarin on liver pathology in HBV X protein transgenic mice. Cancer Res 68, 2033-42.
Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411-5.
Yun, C., Cho, H., Kim, S. J., Lee, J. H., Park, S. Y., Chan, G. K. and Cho, H. (2004). Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Mol Cancer Res 2, 159-69.
Zhang, D. Y. and Friedman, S. L. (2012). Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 56, 769-75.
Zhang, W. Y., Xu, F. Q., Shan, C. L., Xiang, R., Ye, L. H. and Zhang, X. D. (2009). Gene expression profiles of human liver cells mediated by hepatitis B virus X protein. Acta Pharmacol Sin 30, 424-34.
Zhao, Y., Liao, Q., Zhu, Y. and Long, H. (2011). Endothelin-1 promotes osteosarcoma cell invasion and survival against cisplatin-induced apoptosis. Clin Orthop Relat Res 469, 3190-9.
Zhong, S., Tang, M. W., Yeo, W., Liu, C., Lo, Y. M. and Johnson, P. J. (2002). Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 8, 1087-92.
Zhu, H., Wang, Y., Chen, J., Cheng, G. and Xue, J. (2004). Transgenic mice expressing hepatitis B virus X protein are more susceptible to carcinogen induced hepatocarcinogenesis. Exp Mol Pathol 76, 44-50.
Zhu, S., Lee, J. S., Guo, F., Shin, J., Perez-Atayde, A. R., Kutok, J. L., Rodig, S. J., Neuberg, D. S., Helman, D., Feng, H. et al. (2012). Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362-73.
Zon, L. I. and Peterson, R. T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4, 35-44.
Zorn, A. M. (2008). Liver development.
Zorn, A. M. and Wells, J. M. (2009). Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25, 221-51.
Zucman-Rossi, J. (2010). Molecular classification of hepatocellular carcinoma. Dig Liver Dis 42 Suppl 3, S235-41.
指導教授 喻秋華、金秀蓮
(Chiou-Hwa Yuh、Shiow-Lian Catherine Jin)
審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明