博碩士論文 100421013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.133.156.201
姓名 曾希執(Shi-jr Tzeng)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 應用類神經網路建構醫療手術超時預測模型之研究
(Using Artificial Neural Networks for Predicting Surgery Overtime)
相關論文
★ 企業流程為核心的食品產業運籌體系規劃:低溫物流部份★ 以企業流程方法規劃整體飛航後勤維修體系之研究
★ 成衣產業導入ERP運籌管理方案之個案研究★ 光電產業試產基地之生產最佳化模式:以光投影機為例
★ TFT LCD產業獲利因素之探討★ 科技事業進行合併/讓售之決策過程與成效之個案探討
★ 企業治理、風險及遵循解決方案導入之個案研究-以職責分離資訊系統為例★ 品質機能展開與多準則決策於設備開發應用
★ ERP導入品質因素對IFRS轉換專案之影響★ ERP投資金額對服務品質及導入後IT治理目標之分析
★ ERP 導入問題對專案的影響★ IFRS轉換對員工退休金計畫影響
★ IFRS轉換問題對IFRS效益的影響★ 電子產業新產品開發參考模式之發展
★ 應用資料科學方法提昇國防裝備可靠度之研究-以防空系統為例★ 企業資訊方案行銷歷程之探討-以MES為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在世界各國醫療照護系統中,醫療浪費是普遍存在的問題,台灣自1995年實施全民健保之後,中央健康保險局虧損的問題也日益嚴重,在2002年實施醫療費用總額支付制度之後,支出上限的設定令醫院在成本上需要更準確的控制。醫院手術室約佔醫院約40%的收入與花費來源,為醫院最大的成本中心,手術排程為手術室重要的績效指標,本研究致力於改善手術超時預測之方法研究。本研究運用類神經網路以台北某醫學中心之手術資料建構手術超時模型,結果發現手術醫師年資、麻醉醫師年資、手術助手數量、是否為急診病患、病患是否住ICU加護病房、是否為假日病患、是否為住院病患、是否為麻醉病患、是否為緊急麻醉病患、是否為全身麻醉病患、病患性別、手術時間是否加班時間、以及科別最適合建構類神經網路,本研究建構出的網路ROC 值為0.637,和貝氏分類器比較,類神經網路有較好的效度。本研究所建構之醫療手術超時預測模型,將能提供手術排程人員在手術排程上的判斷依據。
摘要(英) Wasting in health care spending has become a common issue in health care systems worldwide. After the implementation of the national health insurance system in 1995, the Bureau of National Insurance’s deficit has also becoming a serious issue in Taiwan. With the implementation of the global budget System the budget of hospitals are limited by expenditure cap which increase the needs of more precise cost control for the managers in hospital. Operating rooms have been estimated to account for more than 40% of a hospital’s total revenues thus the largest cost center in a hospital (Denton. Et al. 2006). Scheduling is an important factors of operating room performance. This paper focus on predicting surgery overtime.
The data set used for developing and testing the neural network was collected from a medical center in Taipei. We discovered that Years of service of the surgeon, Years of service of the anesthetist, numbers of the assistant during operation, emergency operation, emergency anesthesia, full body anesthesia, anesthesia, inpatient, ICU, overtime, sex of patients and sections are best fit for developing the neural network. The performance of the network was also evaluated by calculating the area under the Receiver Operating Characteristic (ROC) curve in the test set, 0.637. Compare with Naïve Bayesian Classifier, the Neural network has better validity. We believe the surgery overtime prediction model we developed would serve as a prediction aid for scheduling surgery operations.
關鍵字(中) ★ 手術室
★ 手術超時
★ 類神經網路
關鍵字(英)
論文目次 一、 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 1
1-3 論文結構 2
二、 相關研究 4
2-1 醫院品質與成本 4
2-2 手術室排程 5
2-3 類神經網路簡介 7
2-4 單純貝氏分類器 13
三、 研究模型之發展 15
3-1 手術室病患就醫過程分析 15
3-2 資料前處理與變項整理 18
3-3 應用類神經網路建構醫療手術超時預測模型 18
3-4 預測模型評估與比較 19
四、 實證結果與分析 20
4-1 研究資料敘述 20
4-2 變項選擇 25
4-3 類神經網路參數調整 26
4-4 貝氏分類器與類神經網路模型比較 31
4-5 類神經網路決策品質 33
五、 研究論述 34
5-1 手術室排程與手術時間預測 34
5-2 類神經網路於手術排程之應用 35
六、 結論及建議 38
6-1 研究結果討論 38
6-2 研究限制 40
6-3 未來研究方向建議 40
參考文獻 -------------- ---- 42
附錄一 -------------- ---- 48
參考文獻 Arnaout, J. M., & Kulbasian, S. (2008). Maximizing the utilization of operationg rooms with stochastic times using simulation. Proceedings of the 2008 Winter Simulation Conference, 1617-1623.
Cherkassky, V. & Lari-Najafi, H. (1992). Data reprsentation for Diagnostic Neural Networks. Institute of Electrical and Electronics Engineers Expert, 7, 43-ff.
Coley, K. C., Williams, B. A., DaPos, S. V., Chen, C., & Smith, R. B. (2002). Retrospective evaluation of unanticipated admissions and readmissions after same day surgery and associated costs. Journal of Clinical Anesthesia , 14, 349-353.
Devi, S., Rao, K., & Sangeetha, S. (2010). Prediction of Surgery Times and Scheduling of Operation Theaters in Optholmology Department. Journal of Medical Systems, 1-16.
Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manage Science, 10, 13-24.
Dexter, F., Abouleish, A. E., Epstein, R. H., Whitten, C. W., & Lubarsky, D. A. (2003). Use of operating room information system data to predict the impact of reducing turnover times on staffing costs. Anesth Analg, 97, 1119-1126.
Dexter, F., & Ledolter, J. (2005). Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology, 103, 1259-1267.
Dexter, F., Macario, A., Penning, D. H., & Chung, P. (2002). Development of an appropriate list of surgical procedures of a specified maximum anesthetic complexity to be performed at a new ambulatory surgery facility. Anesth Analg, 95, 78-82.
Dimick, J. B., Staiger, D. O., Baser, O., & Birkmeyer, J. D. (2009). Composite measures for predicting surgical mortality in the hospital. Health Affairs (Millwood), 28, 1189-1198.
Eijkemans, M. J. C., van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., & Kazemier, G. (2010). Predicting the Unpredictable A New Prediction Model for Operating Room Times Using Individual Characteristics and the Surgeon’s Estimate. Anesthesiology, 112, 41-49.
Eisenstein, E. L., Bethea, C. F., Muhlbaier, L. H., Davidian, M., Peterson, E. D., Stafford, J. A., & Mark, D. B. (2005). Surgeons’ economic profiles: can we get the "right" answers? Journal of Medical Systems, 29, 111-124.
Fleisher, L. A., Pasternak, L. R., & Lyles, A. (2007). A novel index of elevated risk of inpatient hospital admission immediately following outpatient surgery. Archives of Surgery, 142, 263-268.
Gils, M., Nieminen, K., Summers, R. & Weller, P. R. (1997). Using artificial neural networks for classifying ICU patient states. Institute of Electrical and Electronics Engineers Engineering In Medicine and Biology, 16, 41-47.
Hall, M. A., & Holmes, G. (2000). Benchmarking attribute selection techniques for data mining. Institute of Electrical and Electronics Engineers Transactions on Knowledge and Data Engineering, 15, 1437-1447.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) Curve. Radiology, 143, 29-36.
Hollingsworth, J. M., Ye, Z., Strope, S. A., Krein, S. L., Hollenbeck, A. T., & Hollenbeck, B. K. (2010). Physician-ownership of ambulatory surgery centers linked to higher volume of surgeries. Health Affairs (Millwood), 29, 683-689.
Houdenhoven, M., Hans, E., Klein, J., Wullink, G., & Kazemier, G. (2007). A Norm Utilisation for Scarce Hospital Resources: Evidence from Operating Rooms in a Dutch University Hospital. Journal of Medical Systems, 31, 231-236.
Iregui, M., Ward, S., Sherman, G., Fraser, V. J., & Kollef, M. H. (2002). Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. CHEST, 122, 262-268.
Kumar, A., & Shim, S. J. (2006). Simulating staffing needs for surgical instrument distribution in hospitals. Journal of Medical Systems, 30, 363-369.
Langley, P & Sage, S. (1994). Induction of selective Bayesian Classifiers. Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, 399-406.
Litvak, E., & Bisognano, M. (2011). More patients, less payment: increasing hospital efficiency in the aftermath of health reform. Health Affairs (Millwood), 30, 76-80.
May, J. H., Spangler, W. E., Strum, D. P., & Vargas, L. G. (2011). The Surgical Scheduling Problem: Current Research and Future Opportunities. Production and Operations Management, 20, 392-405.
McManus, M. L., Long, M. C., Cooper, A., Mandell, J., Berwick, D. M., Pagano, M., & Litvak, E. (2003). Variability in surgical caseload and access to intensive care services. Anesthesiology, 98, 1491-1496.
Nikravesh, M., Farell, A. E., & Stanford, T. G. (1996). Model identification of nonlinear time variant processes via artificial neural network. Computers & Chemical Engineering, 20, 1277-1290.
O’Neill, L., & Dexter, F. (2007). Tactical increases in operating room block time based on financial data and market growth estimates from data envelopment analysis. Anesth Analg, 104, 355-368.
Overdyk, F. J., Harvey, S. C., Fishman, R. L., & Shippey, F. (1998). Successful strategies for improving operating room efficiency at academic institutions. Anesthesia & Analgesia, 86, 896-906.
Ozkarahan, I. (2000). Allocation of surgeries to operating rooms by goal programing. Journal of Medical Systems, 24, 339-378.
Pakdil, F., & Harwood, T. N. (2005). Factors that influence efficiency in performing ENT cases: A qualitative and quantitative analysis. Journal of Medical Systems, 29, 285-301.
Perner, P. & Apte, C. (2000), Empirical evaluation of feature subset selection based on a real-world data set, Engineering Applications of Artificial Intelligence, 17, 285-288.
Pernkopf, F. & O’Leary, P. (2003), Floating search algorithm for structure learning of Bayesian network classifiers, Pattern Recognition Letters Archive, 24, 2839-2848.
Price, R. K., Spitznagel, E. L., Downey, T. J., Meyer, D. J. & Risk, N. K. Applying artificial neural network models to clinical decision making. Psychological Assessment, 12, 40-51.
Quinlan, J. R.,(1986). Induction if decision trees. Machine Learning. 81,81-106.
Rosenblatt, F., (1957), The perceptron: A perceiving and recognizing automaton. Technical Report 85-460-1, Project PARA, Cornell Aeronautical Lab.
Report 85-460-1, Project PARA, Cornell Aeronautical Lab.
Schuster, M., Standl, T., Wagner, J. A., Berger, J., Reimann, H., & Am Esch, J. S. (2004). Effect of different cost drivers on cost per anesthesia minute in different anesthesia subspecialties. Anesthesiology, 101, 1435-1443.
Sobolev, B., Harel, D., Vasilakis, C., & Levy, A. (2008). Using the Statecharts paradigm for simulation of patient flow in surgical care. Health Care Management Science, 11, 79-86.
Sobolev, B. G., Sanchez, V., & Vasilakis, C. (2011). Systematic Review of the Use of Computer Simulation Modeling of Patient Flow in Surgical Care. Journal of Medical Systems, 35, 1-16.
Strum, D. P., May, J. H., & Vargas, L. G. (2000). Modeling the uncertainty of surgical procedure times - Comparison of log-normal and normal models. Anesthesiology, 92, 1160-1167.
Strum, D. P., Sampson, A. R., May, J. H., & Vargas, L. G. (2000). Surgeon and type of anesthesia predict variability in surgical procedure times. Anesthesiology, 92, 1454-1466.
Strum, D. P., Vargas, L. G., & May, J. H., (1999). Surgical subspecialty block utilization and capacity planning. Anesthesiology, 90, 1176-1185.
Sun, Y., & Li, X., (2011). Optimizing surgery start times for a single operating room via simulation. Proceeding of the 2011 Winter Simulation Conference, 11-14.
Tu, J. V., & Guerriere, R. J. (1993). Use of a neural network as a predictive instrument for Length of stay in the intensive care unit following cardiac surgery. Medical Care, 26, 220-229.
Walczak, S. & Scharf, J. E. (2000). Reducing surgical patient costs through use of an artificial neural network to predict transfusion requirements. Decision Support Systems, 30, 125-138.
Wickizer, T. M. (1991). Effect of hospital utilization review on medical expenditures in selected diagnostic areas: an exploratory study. American Journal of Public Health, 81, 482-484.
Witten, I. H., Frank, E. & Hall, M. A., Data mining practical machine learning tools and techniques., Elsevier Inc.,Burlingtion, 2011.
Wullink, G., Van Houdenhoven, M., Hans, E. W., van Oostrum, J. M., van der Lans, M., & Kazemier, G. (2007). Closing emergency operating rooms improves efficiency. Journal of Medical Systems, 31, 543-546.
陳姵君,「醫院手術室效能影響因素與效能評估方法之發展」,國立中央大學,碩士論文,民國102年1月。
葉怡成,類神經網路模式應用與實作,九版,儒林,台北市,2009。
指導教授 呂俊德(Jun-der Leu) 審核日期 2013-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明