博碩士論文 983207025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.191.192.250
姓名 鄭語成(Cheng-yu Cheng)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 次波長週期性結構對抗反射膜片特性探討
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 次波長週期性微結構被廣泛的應用在抗反射膜片,可大幅降低光學表面反射率,有效達到抗反射之目的。本研究利用有限時域差分法(FDTD)之演算,設計並分析模擬電磁波在各種複合式的次波長週期性微結構中傳遞的物理現象,模擬的波段設定在400nm – 800nm,約略為可見光的範圍。在此新的複合式微結構下,光波的反射率有明顯的下降,對照以往文獻中提到的單一圓柱陣列或金字塔型陣列之抗反射微結構,約改善39% - 57 %,並經由空間密度的概念分析反射率高低之成因,在各種不同結構中提供最佳比例以增加抗反射之效率。
摘要(英) Based on finite difference time domain method, an optical film surface with subwavelength periodic structure is numerically investigated to improve antireflection property. A improved subwavelength periodic structure is designed by finite difference time domain method, and it can be simulated effective. The antireflection properties of new types of subwavelength structures with different aspect ratios in spectral range of 400–800 nm are analyzed and compared. It is shown that, for the mixing type, the average reflectance is decreased and the variances of the reflectance are evidently smaller. When use the improved structure with a better aspect ratio, the average reflectance of the surface can be improved from 39% ~57%. Obviously, the antireflection properties of the optical film surface with new subwavelength structures can be improved.
關鍵字(中) ★ 次波長結構
★ 抗反射
★ 有限時域差分法
★ 完美吸收層
★ 最密堆積
關鍵字(英) ★ Finite difference time domain
★ Subwavelength structure
★ antireflectance
★ Perfect matched layer
論文目次 目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景、動機與目的 1
1.2 文獻回顧 7
1.2.1 次波長微結構的模擬方法 8
1.2.2 次波長微結構的製造技術 11
1.3 論文架構 14
第二章 抗反射相關理論與模擬方法 15
2.1 各種模擬電磁波傳遞的方法介紹 15
2.2 有限時域差分法 16
2.2.1 馬克斯威爾方程式 16
2.2.2 FDTD方程式 17
2.2.3 三維FDTD形式 18
2.2.4 邊界條件 19
2.2.5 波源 22
第三章 一種新型的圓柱複合型結構 24
3.1 模擬參數設定 25
3.2 模擬結構 26
3.3 模擬結果分析與討論 28
第四章 空間密度與反射率之間的關係 33
4.1 最密堆積概念下的次波長週期性微結構 33
4.1.1 模擬參數設定 34
4.1.2 模擬結構 34
4.1.3 模擬結果分析與討論 36
4.2 分析空間密度與反射率之間關係 47
4.2.1 模擬金字塔型與圓柱型結構 47
4.2.2 分析金字塔型與圓柱型結構空間密度關係 52
4.2.3 圓柱型中間補足結構空間密度分析 57
第五章 結論與未來展望 61
5.1 結論 61
5.2 未來展望 61
參考文獻 62
參考文獻 [1] 陳仲宜、莊允中,「前瞻奈米鍍膜潛力與市場探索」,經濟部技術處產業技術和知識服務計畫,2011。
[2] E. Hecht, “Optics, fourth ed.”, Addison Wesley, Reading, MA, 2002.
[3] 許翔誌,「光纖式多層膜表面電漿共振感測器之研究」,大同大學碩士論文,2009。
[4] 黃雅蓮,「黃綠光磷化鋁鎵銦發光二極體與面射型半導體雷射光學特性之研究」,彰化師範大學物理研究所碩士論文,2001。
[5] P. Lalanne and G. M. Morris, “Fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain”, Proc. SPIE 2776, pp. 300–309, 1996.
[6] C. G. Bernhard, “Structural and functional adaptation in a visual system”, Endeavor 26, pp. 79–84, 1967.
[7] P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle”, National Physical Laboratory, Middlesex Nature 244, pp. 281-282, 1973.
[8] M. F. Land and D. E. Nilsson, “Animal eyes”, Oxford University Press, New York, NY, USA, 2002.
[9] A. R. Parker, “Blink of an eye”, Cambridge university press, Boston, Mass, USA, 2003.
[10] L. P. Biro and J. P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration”, Laser & Photonics Reviews, Vol. 5, pp. 27–51, 2011.
[11] P. Ball, “The Self-Made Tapestry: Pattern formation in nature”, Oxford University Press, New York, NY, USA, 1999.
[12] Y. Kanamori, M. Sasaki and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates”, Opt. Lett. 24, pp. 1422-1424, 1999.
[13] C. J. Ting, C. F. Chen and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using roll-to-roll micro-replication process”, J. Micromech. Microeng. 18, pp. 1–9, 2008.
[14] S. He, X. Ao and Z. Ruan, “Some study of 2D photonic crystals of negative refraction for subwavelength focusing”, Antenna Technology: Small Antennas and Novel Metamaterials, pp. 29–30 2005.
[15] L. Chen and E. Towe, “Design of high-Q microcavities for proposed two-dimensional electrically pumped photonic crystal lasers, selected topics in quantum electronics”, IEEE Journal of Vol. 12 , pp. 117-123, 2006.
[16] W. Kuang, W. J. Kim and O’Brien, “Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals”, Journal of lightwave technology, Vol. 25, NO. 9, pp. 2612-2617, 2007.
[17] Q. Xiong, S. Chen and Y. Hu, “Efficient computation scheme of grating structure using RCWA and FDFD”, Computational Problem-Solving (ICCP), pp. 5-8, 2011.
[18] Y. Li, M. Y. Lee, H. W. Cheng and Z. L. Lu, “3D simulation of morphological effect on reflectance of Si3N4 sub-wavelength structures for silicon solar cells”, Nanoscale Research Letters, Vol. 7, no. 1, pp. 196, 2012.
[19] K. C. Sahoo, Y. Li and E. Y. Chang, “Numerical calculation of reflectance of subwavelength structures on silicon nitride for solar cell application”, Comput Phys Commun 180:1721–1729, 2009.
[20] K. C. Sahoo, Y. Li and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for solar cell application”, IEEE Trans Electron Dev 57, pp. 2427–2433, 2010.
[21] C. J. Ting, C. F. Chen and C. P. Chou, “Subwavelength structures for broadband antireflection application”, Optics Communications 282 , pp. 434–438 , 2009.
[22] J. W. Leem, J. S. Yu, Y. M. Song and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles”, Solar Energy Materials & Solar Cells, pp. 669–676 , 2011.
[23] 張高德,「廣義光子晶體元件之研究與分析」,國立中央大學博士論文,2007。
[24] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas and Propagation, pp. 302-307, 1966.
[25] J. P. Berenger, “Perfectly matched layer for the FDTD solution of wave-structure interaction problems”, IEEE Transactions on Antennas and Propagation, vol. 44, no. 1, pp. 110–117, 1996.
[26] C. J. Ting, C. F. Chen and C. P. Chou, “Antireflection subwavelength structures analyzed by using the finite difference time domain method”, Optik 120, pp. 814–817, 2009.
[27] C. J. Ting, C. F. Chen and C. P. Chou, “Subwavelength structured surfaces with a broadband antireflection function analyzed by using a finite difference time domain method”, Optik 121, pp. 1069–1074, 2010.
[28] C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication”, Nano Letters, pp.471–475, 2004.
[29] D. S. Marx and D. Psaltis, “Optical diffraction of focused spots and subwavelength”, J. Opt. Soc. Vol. 14, No. 6, pp. 1268-1278, 1997.
[30] K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang and C. W. Change, “Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application”, Nanoscale Res Lett, pp. 680–683, 2009.
[31] K. C. Sahoo, Y. Li and E. Y. Chang, “Shape effect of silicon nitride sub-wavelength structure on reflectance for solar cell application”, IEEE Trans Electron Dev 57, pp. 2427–2433, 2010.
[32] R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics”, Laser Photonics Rev. 6, No. 5, pp. 641–659, 2012.
指導教授 陳奇夆 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明