博碩士論文 100226044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.147.68.201
姓名 黃偉真(Wei-chen Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 金屬表面電漿元件於光電轉換之應用
(Surface Plasmonic Device for the Application of Optoelectronic Transition)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 將太陽光能量轉換成電能的技術有很多種方式,本論文利用金屬表面電漿特性應用於金屬-絕緣層-金屬元件(metal-insulator-metal, MIM),其可直接轉換可見光及近紅外光區的能量,並且可根據奈米光柵設計作吸收光譜調變,其光電轉換取決於以下兩種機制,第一是利用表面電漿子(Surface Plasmons, SPs)的小型電子震盪,可以與光有效的耦合,在電極上產生更高濃度的熱電子,第二是熱載子穿隧(hot carrier tunneling)理論機制。
傳統大多使用Kretschmann法耦合表面電漿,而本論文研究則將金屬層製作
成奈米光柵,如此不僅可以與其有相同的效果外,還可以縮小整體元件的尺寸,
並且使用有限時域差分法進行光柵設計,探討光柵週期性、深度等參數對表面電
漿光譜吸收趨勢。製程上,則使用雷射雙光束干涉微影法(interference lithography)製作光柵,相較於費時又昂貴的電子束微影法(E-beam Lithography, EBL),干涉微影可以做到短時間大面積的週期性奈米結構優點。
最後在光電量測,除了觀察到表面電漿光譜吸收外,也成功量得元件在可見
光波段光電轉換現象,相較於平板MIM 元件,除了減少整體元件的大小,實驗
所得一維週期性光柵MIM 元件光電轉換效率超過平板MIM 元件三個數量級。
摘要(英) There are several techniques which can transit solar energy. In the study, the metal-insulator-metal device (MIM) based on the surface plasmonic effect was applied to convert solar energy with the spectrum ranges from visible to infrared into electricity. The benefit is that its absorption wavelength is tunable according to the period of its surface grating. The optoelectronic mechanism is when the light with the energy meet the surface plasmons generation, the hot carriers will be generated. These hot carriers will become photocurrent using tunneling effect or their energies are higher than the barrier.
The traditional method of generating the surface plasmon resonant (SPR) was Kretschmann configuration. In the study, we developed the planar MIM device into nano-grating structure and designed the device using the Finite Difference Time Domain (FDTD) method. The advantages of the subwavelength grating structure were not only the same
purpose of SPR generation but also the size reduction. We also investigated the SPR absorption spectrum resulted from the parameters of grating period, depth, duty cycle, light source angle and the thickness of MIM each layer. A two-beam-interference lithography was used to fabricate the nano-grating in the study. Compared with the expensive and
time-consuming E-beam lithography, it took shorter time and achieved large-area periodic nanostructure.
Finally, in the optoelectronic measurement, we observed the SPR spectrum and the optoelectronic transition phenomenon in MIM device. The efficiency of the 1D grating of MIM device was greater than planar MIM device for three orders of magnitude.
關鍵字(中) ★ 金屬-絕緣層-金屬 元件
★ 表面電漿共振
★ 能量轉換
★ 奈米光柵
關鍵字(英) ★ metal-insulator-metal devices
★ surface plasma resonance
★ energy conversion
★ nano-grating
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第一章 緒論 1
1-1. 文獻探討 1
1-2. 研究目的 2
1-3. 本文架構 3
第二章 基礎理論 4
2-1. 光電轉換機制比較 4
2-2. 金屬的介電函數[17-19] 5
2-3. 表面電漿理論[21] 11
2-4. 激發表面電漿方法[20] 17
2-5. MIM 元件運作原理 20
2-5-1. MIM 元件熱載子光電流理論[26] 20
2-5-2. 表面電漿增益於MIM 元件 24
第三章 元件設計與模擬 26
3-1. 有限時域差分法(FDTD) 26
3-2. 平板MIM 表面電漿光譜模擬 32
3-2-1. 模型參數 32
3-2-2. 入射光源角度與共振波長關係 33
3-2-3. MIM 各層厚度探討 34
3-3. 一維光柵金屬MIM 表面電漿光譜模擬 37
3-3-1. 模型參數 38
3-3-2. 結果討論 39
3-3-3. 電場分布及電能密度 43
第四章 元件製作與量測 47
4-1. 實驗流程 47
4-2. 實驗設備介紹 54
4-2-1. 製程設備 54
4-2-2. 量測設備 56
4-3. 平板MIM 元件量測結果 62
4-4. 一維光柵MIM 元件量測結果 65
第五章 結論與未來展望 70
參考文獻 71
參考文獻 [1] R. L. Bailey, "A Proposed New Concept for a Solar-Energy Converter," J. Eng.
Gas Turbines Power, vol. 94, p. 5, 1972.
[2] A. M. Marks and M. Athol, "Device for conversion of light power to electric
power," 1984.
[3] G. H. Lin, R. Abdu, and J. O. M. Bockris, "Investigation of resonance light
absorption and rectification by subnanostructures.," J Appl Phys, vol. 80,
1996.
[4] L. O. Hocker, "Frequency Mixing in the Infrared and Far-Infrared Using a
Metal-to-Metal Point Contact Diode," Applied Physics Letters, vol. 12, p. 401,
1968.
[5] J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L.
Smythe, "ac electron tunneling at infrared frequencies: Thin-film M-O-M
diode structure with broad-band characteristics," Applied Physics Letters, vol.
24, pp. 275-279, 1974.
[6] B. Berland, "Photovoltaic technologies beyond the horizon: optical rectenna
solar cell.," ITN Energy Systems, Inc. Final Report2003.
[7] S. Krishnan, H. L. Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, "Design
and development of batch fabricatable metal-insulator-metal diode and
microstrip slot antenna as rectenna elements.," Sens. Actuators, A, vol. 142, pp.
40-47, 2008.
[8] P. Esfandiari, "Tunable antenna-coupled metal-oxide-metal uncooled IR
detector.," in Proc. SPIE Int. Soc. Opt. Eng., 2005.
[9] M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar
spectrum rectification using nano-antennas and tunneling diodes.," in Proc.
SPIE 2010.
[10] B. J. Eliasson, "Metal-Insulator-Metal Diodes For Solar Energy Conversion,"
2001.
[11] D. Kovacs, J. Winter, S. Meyer, A. Wucher, and D. Diesing, "Photo and
particle induced transport of excited carriers in thin film tunnel junctions,"
Physical Review B, vol. 76, 2007.
[12] M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, "Solar
spectrum rectification using nano-antennas and tunneling diodes," presented at
the Optoelectronic Integrated Circuits XII., 2010.
[13] T. George, I. T. Wu, N. Kislov, J. Wang, M. S. Islam, and A. K. Dutta,
"Metal-insulator-metal tunneling diode for uncooled infrared high-speed
detectors," in Micro- and Nanotechnology Sensors, Systems, and Applications
II, 2010, pp. 76792K-76792K-7.
[14] M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical
coupling into metal-insulator-metal plasmon modes with subwavelength
diffraction gratings," Applied Physics Letters, vol. 92, p. 113109, 2008.
[15] F. Wang and N. A. Melosh, "Plasmonic energy collection through hot carrier
extraction," Nano Lett, vol. 11, pp. 5426-30, Dec 14 2011.
[16] F. Wang and N. A. Melosh, "Theoretical analysis of hot electron collection in
metal-insulator-metal devices," vol. 8111, pp. 81110O-81110O-6, 2011.
[17] "光學," 張阜權, 孫榮山, and 唐偉國, Eds., ed, 1998, pp. 307-318.
[18] Guru and Hiziroglu, 電磁學理論基礎/Electromagnetic Field Theory Fundamentals, 2005.
[19] 顏嘉宏, "表面電漿共振系統之相位擷取與分析," 碩士論文, 光 電 科 學
與 工 程 學 系, 國立中央大學, 2009.
[20] 邱國斌 and 蔡定平. (2006) 金屬表面電漿簡介. 物理雙月刊(二十八卷二
期).
[21] 吳民耀 and 劉威志. (2006) 表面電漿子理論與模擬. 物理雙月刊(二十八
卷二期).
[22] R. Wood, "On a Remarkable Case of Uneven Distribution of Light in a
Diffraction Grating Spectrum," Proc. Phys. Soc. London 18 1902.
[23] U. FANO, "The Theory of Anomalous Diffraction Gratings and of
Quasi-Stationary Waves on
Metallic Surfaces (Sommerfeld’s Waves)," J. O. S. A., vol. 31, p. 10, 1941.
[24] A. OTTO, "Excitation of Nonradiative Surface Plasma Waves in Silver by the
Method of Frustrated Total Reflection," Zeitschrift ffir Physik, vol. 216, 1968.
[25] E. Kretschmann, "The determination of the surface roughness of thin layers by
measuring the angular dependence of the scattered radiation of surface plasma
oscillations," Optics Communications, vol. 10, pp. 353-356, April 1974.
[26] F. Wang and N. A. Melosh, "Supplementary Information for Plasmonic Energy
Collection through Hot Carrier Extraction," p. 3, 2011.
[27] K. H. Gundlach, "Theory of metal-insulator-metal tunneling for a simple
two-band model," Journal of Applied Physics, vol. 44, p. 5005, 1973.
[28] J. Robertson and C. W. Chen, "Schottky barrier heights of tantalum oxide,
barium strontium titanate, lead titanate, and strontium bismuth tantalate,"Applied Physics Letters, vol. 74, pp. 1168-1170, 1999.
[29] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation
for stable and efficient implementation of the rigorous couoled-wave analysis
of binary gratings," JOSA A, vol. 12, 1995.
[30] P. E. Blöchl, "Protect augmented wave method," Phys. Rev. B50, 1994.
[31] M. Suzuki, "Transfer-matrix method and Monte Cario simulation in quantum
spin systems," Physical Review B (Condensed Matter), vol. 31, 1985.
[32] K.S.Yee, "Numerical solution of initial boundary value problems involving
Maxwall’s equation in isotropic media," IEEE Trans. Antennas and
Propagation, vol. 14, 1996.
[33] V. Demir. Simulation of Electromagnetic Fields:The Finite-Difference
Time-Domain (FDTD) Method and Its Applications.
[34] 李正中, 薄膜光學與鍍膜技術 第五版: 藝軒圖書出版社, 2006.
[35] 陳哲雄, "原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易
操作手冊."
[36] F. Wang and N. A. Melosh, "Power-independent wavelength determination by
hot carrier collection in metal-insulator-metal devices," naturecommunications,
2013.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明