博碩士論文 100226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.15.139.71
姓名 李冠宏(Kuan-Hung Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 LED 擬真蠟燭燈之研究
(The Study of High-fidelity Candle Light with High-power LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,我們以LED為光源設計一擬真蠟燭燈。藉由結合導光元件以及散射元件,我們成功地制作了一近似真實蠟燭行為的蠟燭燈。此外,透過電路控制並輸入一特定的頻率訊號,使得此蠟燭燈的閃爍行為與與真實蠟燭受空氣擾動時相似。
摘要(英) In this thesis, we propose a high-fidelity candle light based on a white LED. According to the combination of light guide and scattering element, we seccussfully manufracture a lighting device and the lighting behavior is much similar to real candle. Besides, we input a series of specific signals by electric device to modulate the twinkle mode.
關鍵字(中) ★ 蠟燭燈 關鍵字(英) ★ Candle Light
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖索引 vi
第一章 緒論 1
1-1 前言 1
1-2 照明發展歷程 2
1-3 LED 發展背景 3
1-4 研究動機與目的 5
第二章 基本理論概念 8
2-1 幾何光學 8
2-2 散射理論 10
2-3 色彩學 12
2-4 電路學 15
2-4-1 運算放大器 15
2-4-2 類比數位轉換器 17
2-4-3 單晶片微處理器 20
2-4-4 脈衝寬度調變 20
第三章 LED 蠟燭燈設計 22
3-1 蠟燭燈燭火之初階設計 22
3-1-1 真實燭火分析 22
3-1-2 LED蠟燭燈光源設計 26
3-1-3 蠟燭燭火設計 28
3-2 LED 蠟燭燈之燭火製作流程 34
第四章 LED 蠟燭燈之電路設計 40
4-1 LED 蠟燭燈電路之主要元件 40
4-1-1 電容式麥克風 40
4-1-2 類比數位轉換器 ADC0804 41
4-1-3 單晶片微處理器 AT89C2051 44
4-2 LED蠟燭燈電路之完整架構 46
第五章 結論 50
參考文獻 51
中英文名詞對照表 60
參考文獻 1. 金億達股份有限公司, http://www.cyd.com.tw/?led-white-octanglelight.
2. LEDinside, http://www.ledinside.com.tw/news/20120619-21642.html.
3. 經濟部能源局, http://www.moeaboe.gov.tw.
4. LEDinside, http://www.ledinside.com.tw/outlook/20121002-23246.html.
5. LEDinside, http://www.ledinside.com.tw/knowledge/20090109-8979.html.
6. H. J. Round, “A note on carborundum,” Electr. World 19, 309 (1907).
7. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin, 1997).
8. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
9. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
10. R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 1-4 (2006).
11. S. J. Duclos, J. Jansma, J. C. Bortscheller, and R. J. Wojnarowski, “Phosphor coating with self-adjusting distance from LED chip,” United States Patent, US 6635363 B1 (2003).
12. R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color convertingfor ultra high brightness LED package,” Proc. SPIE 6198, 61980B (2006).
13. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
14. D. B. Thompson, A. Murai, M. Iza, S. Brinkley, S. P. DenBaars, U. K. Mishra, and S. Nakamura, “Hexagonal truncated pyramidal light emitting diodes through wafer bonding of ZnO to GaN, laser lift-off, and photo chemical etching,” Jpn. J. Appl. Phys. 47, 3447-3449 (2008).
15. I. Schnitzer, E. Yablonovitch, C. Carneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light emitting diodes,” Appl. Phys. Lett. 63, 2174-2176 (1993).
16. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
17. S. C. Hsu, C. Y. Lee, J. M. Hwang, J. Y. Su, D. S. Wuu, and R. H. Horng, “Enhanced light output in roughened GaN-based light-emitting diodes using electrodeless photoelectrochemical etching,” IEEE Photo. Techno. Lett. 18, 2472-2474 (2006).
18. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
19. S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
20. S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
21. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of P-Type GaN films,” Jpn. J. Appl. Phys. 31, 1258-1266 (1992).
22. S. Chichibu, T. Azuhata, T. Sota, H. Amano, and I. Akasaki, “Optical properties of tensile-strained wurtzite GaN epitaxial layers,” Appl. Phys. Lett. 70, 2085 (1997).
23. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Continuous‐wave operation of InGaN multi-quantum-well-structure laser diodes at 233 K,” Appl. Phys. Lett. 69, 3034 (1996).
24. CREE, http://www.cree.com/news-and-events/cree-news/press-releases
/2012/april/120412-254-lumen-per-watt.
25. Seoul miconductor,http://www.acrich.com/en/prCenter/news/view.asp?seq= 116.
26. LEDinside, http://www.ledinside.com.tw/news/20120828-22718.html.
27. M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
28. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
29. L. Jiang and H. Liu, “Analysis of heat dissipation for integrated high power LED lamp,” Proc. SPIE 7849, 78492A (2010).
30. Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
31. Y. Wang, J. Bentley, C. Du, K. Tatsuno, and H. P. Urbach, “Lens design of street lamp for integrated high power LED,” Proc. SPIE 7849, 78490Z (2010).
32. LED燈光之家,http://www.ledgood.com/2010/03/you-cheliu-daidong-
fengneng-led-ludeng/.
33. Autonet, http://test.autonet.com.tw/cgi-bin/file_view.cgi?b0010684L5001.
34. Audi 汽車資訊, http://audilee.blogspot.com/2007/08/audiled.html.
35. A. Cvetkovic, O. Dross, J. Chaves, P. Benítez, J. C. Miñano, and R. Mohedano, “Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps,” Opt. Express 14, 113014-113020 (2006).
36. 彭偉捷,高功率LED之歐規汽車近光燈設計,國立中央大學光電所碩士論文,中華民國九十四年。
37. 藍鈺邴,高功率白光發光二極體之汽車頭燈設計,國立中央大學光電所碩士論文,中華民國九十五年。
38. 孫瑞宏,高功率LED應用於車前燈之設計,國立中央大學光電所碩士論文,中華民國九十五年。
39. 胡志銘,特殊封裝之白光LED應用於汽車近光燈之研究,國立中央大學光電所碩士論文,中華民國九十七年。
40. 蔡直佑,高位移容忍度LED車前燈之光學設計,國立中央大學光電所碩士論文,中華民國九十九年。
41. 楊凱宇,高功率LED之歐洲法規自行車前燈設計,國立中央大學光電所碩士論文,中華民國九十八年。
42. Busch & Muller, http://www.bumm.de/.
43. CENS, http://cens.com/cens/html/en/news/news_inner_42569.html.
44. J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen, and C. H. Lin, “Candle light-style organic light-emitting diodes,” Adv. Funct. Mater. 23, 2750-2757 (2013).
45. Lighting Research Center, http://www.lrc.rpi.edu/resources/newsroom/
projectsheets.asp.
46. 飛利浦照明台灣官方網站, http://www.lighting.philips.com.tw/.
47. J. S. Fender, J. E. Harvey, “Specifying surface finish and scatteringtolerances of conical optical elements,” Opt. Eng. 21, 983-986 (1982).
48. P. Roche and E. Pelletier, “Characterizations of optical surfaces by measurement of scattering distribution,” Appl. Opt. 23, 3561-3566 (1984).
49. K. J. Allardyce and N. George, “Diffraction analysis of rough reflective surfaces,” Appl. Opt. 26, 2364-2375 (1987).
50. J. E. Harvey, E. C. Moran, and W. P. Zmek, “Transfer function characterization of grazing incidence optical systems,” Appl. Opt. 27, 1527-1533 (1988).
51. Jean M. Bennett and Lars Mattsson, Introduction to surface roughness and scattering, second edition (Washington, D. C., OSA, 1999).
52. C. N. Kurtz, “Transmittance characteristics of surface diffusers and the design of nearly band-limited binary diffusers,” J. Opt. Soc. Am. 62, 982-989 (1972).
53. M. Kowalczyk, “Strong phase diffusers with the minimized standard deviation of roughness,” J. Opt. Soc. Am. A 3, 1293-1296 (1986).
54. S. I. Kim, Y. S. Choi, Y. N. Ham, C. Y. Park, and J. M. Kim, “Holographic diffuser by use of a silver halide sensitized gelatin process,” Appl. Opt. 42, 2482-2491 (2003).
55. Craig F. Bohren and Donald R. Huffman, Absorption and scattering of light by small particles (New York : Wiley, 1983).
56. M. Bartholdi, G. C. Salzman, R. D. Hiebert, and G. Seger, “Single-particle light-scattering measurements with a photodiode array,” Opt. Lett. 1, 223-225 (1977).
57. E. Parshall, M. Cronin-Golomb, and R. Barakat, “Model of amplified scattering in photorefractive media:comparison of numerical results and experiment,” Opt. Lett. 20, 432-434 (1995).
58. A. Tagaya, M. Nagai, Y. Koike, and K. Yokoyama, “Thin liquid-crystal display backlight system with highly scattering optical transmission polymers,” Appl. Opt. 40, 6274-6280 (2001).
59. G. Wyszecki and W. S. Stiles, Color Science (John Wiley, New York, 1982).
60. 張義和、陳敵北,例說8051-C語言,新北市:新文京開發,民國八十八年。
61. J. Guild, “The colorimetric properties of the spectrum,” Philos. R. Soc. London 230, 149-187 (1931).
62. W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral color,” Trans. Opt. Soc. London 30, 141-164 (1928).
63. W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc. London 31, 201-218 (1930).
64. 新電子, http://www.mem.com.tw/article_content.asp?sn=0707050010.
65. Wikipedia, http://en.wikipedia.org/wiki/CIE_1931_color_space.
66. C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of CRI performance associated with CCT of white LEDs with two phosphors,” Opt. Eng. 51, 054003 (2012).
67. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2013-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明