博碩士論文 100622601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.16.47.65
姓名 薩伏丁(Saifuddin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 結合等效線性場址修正之隨機式地動模擬
(Stochastic Ground Motion Simulation with Site Correction Using Equivalent-Linear Method)
相關論文
★ 利用井下地震儀陣列探討單站頻譜比法之應用★ 高屏地區場址效應之探討
★ 以地震儀陣列及基因演算法推估近地表剪力波波速★ 臺灣中部地區強地動波形模擬
★ 利用接收函數法推估蘭陽平原淺層速度構造★ 蘭陽平原場址效應及淺層S波速度構造
★ 探討不同地質區強震站之淺層S波速度構造★ 震源破裂過程及地表強地動特性之陣列分析研究
★ 利用微地動探討桃竹苗地區之場址效應★ 利用微地動量測探討台灣中部地區之場址效應
★ 利用有限斷層法探討台北盆地之場址效應★ 利用微地動量測探討台北盆地之場址效應
★ 以恆春地震探討高屏地區之場址效應★ 利用隨機式震源模型探討蘭陽平原之場址效應
★ 利用時頻分析技術檢視土壤非線性反應★ 台灣潛勢地震之發生機率評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在地震災損評估研究上,工程師最方便的方法就是利用最大地表加速度(PGA)衰減關係式。本研究結合了隨機式點震源模擬(Boore, 2003)以及等效線性方法(Idriss & Sun, 1992)進行地動之模擬,並與衰減關係式之計算結果作比較。進行隨機式地動模擬所需之基本地震參數,則由前人之研究取得(Sokolov et al., 2006; 2009)。本研究先直接模擬台北盆地邊緣之岩盤站(TAP086測站)以及靠近五股井下地震儀陣列之沖積層站,岩盤站所得之結果尚能接受,但沖積層站之結果則有所低估。所以接下來使用模擬所得之岩盤站和沖積層站之波形記錄,利用等效線性方法進行下一步的場址修正。由前人之研究可以得到五股井下地震儀陣列之剪力波速剖面(Wen et al., 1995; Wang et al., 2004)以及土壤地質剖面(Su et al., 1997),將這些參數整理後代入,並以上一步驟所得到的岩盤站波形當成盆地下方入射波形,以等效線性方法計算井下地震儀陣列在不同深度以及地表之波形。此入射波形也可置放在不同的深度(30公尺,工程基盤和地質基盤)入射,則得到不同之場址修正結果。以五股井下地震儀陣列為例,等效性方法能有效的修正地表最大加速度值以及傅氏振幅譜,可降低預估PGA的誤差率(σlnErr)以及DSPD值,DSPD值是用來表示兩頻譜間差異之一種計算方式。且將入射波形從較深之位置入射,σlnErr會較低。與利用衰減關係式計算之結果作比較,本研究方法預估之岩盤站(TAP086)與沖積層站(五股井下地震儀陣列)結果皆較佳。本研究也將同一套流程對松山菸場井下地震儀陣列進行地動模擬,從30公尺入射之結果,σlnErr與DSPD值並無太大改變,但是從工程基盤和地質基盤入射之結果,σlnErr與DSPD值則有變大,此一現象或許跟松山菸場井下地震儀陣列之場址條件有關。如不考慮此一現象,從工程基盤和地質基盤入射,五股與松山菸場之結果皆可以得到類似之場址修正。這現象可能由於松山層顯著地控制著此場址之土層放大效應造成。
摘要(英) Attenuation relationship of peak ground acceleration is widely employed by engineers in seismic hazard estimation studies. This study was conducted by combining stochastic point-source (Boore, 2003) and equivalent-linear (Idriss & Sun, 1992) methods to simulate ground motion, and compared the results of attenuation relationship. Seismic parameters for stochastic method were selected based on previous studies (Sokolov et al., 2006; 2009). The stochastic method was performed to obtain simulated waveforms at a rock site (TAP086 station) near of Wuku downhole and a soil site (Wuku downhole). It showed decent results at rock site, while underestimated results at soil site. Simulated waveforms at rock- and soil-sites locations were used as outcrop input motions for site correction. Site correction was performed using equivalent-linear method. Shear wave velocity profile (Wen et al., 1995; Wang et al., 2004), geological soil profile of Wuku downhole (Su et al., 1997) and input motions were required for equivalent-linear method to obtain simulated waveforms at soil surface of Wuku downhole array. Site correction was performed using outcrop input motions at different depths (30 m, engineering and geological bedrocks). Comparison of peak ground acceleration (PGA) observation against simulation was presented in log and linear scales while degree of spectrum difference (DSPD) was only in log scale. In general, equivalent-linear method could assist to correct simulated PGA and Fourier amplitude spectrum (FAS) at Wuku downhole either using simulated waveform at rock or soil-site locations. It was showed by reducing value of error in PGA comparison in log scale (σ_lnErr) and linear scale excluding input motion using simulated waveform of rock site at geological bedrock in linear scale and reducing slightly value of DSPD. For input motion in Wuku downhole, we found tendency that the deeper of input motion, the lower σ_lnErr value. Comparison of our simulation results to attenuation relationship, we found that our results were slightly better at TAP086 and Wuku downhole. We also applied stochastic point source and equivalent-linear methods to Sungshan downhole site. Stochastic point-source already yielded decent PGAs at surface of Sungshan downhole, site correction was also performed at different depths of input motions (30 m, engineering, and geological bedrocks). Site correction at 30 m did not alter value of σ_lnErr and DSPD, while engineering and geological bedrocks enlarged the value of σ_lnErr and DSPD. These phenomena might be occurred due to site condition of Sungshang downhole. Regardless of the results from Sungshan downhole were not decent as Wuku downhole, we found that engineering and geological bedrocks obtained similar site correction as Wuku downhole. These phenomena might be occurred because significant amplification was controlled by top layer of engineering bedrock which is Sungshang Formation.
關鍵字(中) ★ 隨機式點震源方法
★ 等效線性方法
★ 五股井下地震儀陣列
★ TAP086
關鍵字(英) ★ stochastic point-source method
★ equivalent-linear method
★ TAP086
★ Wuku downhole array
論文目次 Chinese Abstract i
Abstract iii
Acknowledgements v
Table of Contents vi
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.3 Objectives 3
1.4 Outline 4
Chapter 2 Geology and Taipei Basin Downholes 5
2.1 The Taipei Basin 5
2.2 Taipei Basin Downholes 5
2.3 TAP086 Station 7
Chapter 3 Methodology 15
3.1 Generation of Ground Motion at a Rock Site and Soil Site Using SMSIM 15
3.1.1 Source Model 16
3.1.2 Path Effect 17
3.1.3 Site Effect 18
3.2 Generation of Ground Motion at Soil Site Using SHAKE91 18
3.2.1 Propagation of Harmonic Shear Wave in a One-Dimensional System 19
3.3 Attenuation Relationship for PGA 22
Chapter 4 Data Processing 27
4.1 Data Selection 27
4.2 Simulation Process 27
4.2.1 Stochastic Point-Source Method (SMSIM) 27
4.2.2 Seismic Parameters for SMSIM 28
4.3 Equivalent-Linear Method (SHAKE91) 28
4.3.1 Parameters for SHAKE91 28
4.4 Data Processing 28
4.4.1 Comparison of Observed and Simulated Waveform in Time Domain (PGA) 28
4.4.2 Comparison of Observed and Simulated Waveforms in Frequency Domain (DSPD) 29
4.5 Verification on TAP086 Station as Rock Outcrop 30
4.6 Verification on Artificial Layers of Wuku Downhole 30
4.7 Attenuation Relationship for Predicting PGA at TAP086 Station and WK Downhole Station 30
4.8 Application of Stochastic Point Source and Equavalent-Linear Methods to SS Downhole 30
Chapter 5 Result and Discussion 45
5.1 Correction to Site Class B (TAP086) 45
5.2 Verification on Artificial Layers of Soil Profile at Wuku Downhole 45
5.3 Verification on TAP086 Station as Rock Outcrop 45
5.4 Simulated Waveforms at Wuku Downhole Using SMSIM 45
5.5 Site Correction at Wuku Downhole Using SHAKE91 46
5.5.1 Wuku Downhole Site Correction Using Simulated Waveforms of TAP086 46
5.5.2 Wuku Downhole Site Correction Using Simulated Waveforms of Wuku Downhole 46
5.6 Comparison of Our Simulation to Attenuation Relationship Results 48
5.7 Application of Stochastic Point Source and Equivalent-Linear Methods at SS Downhole 48
5.8 Result Comparison of Wuku and Sunshang Downholes 49
Chapter 6 Conclusions 75
References 77
Appendix A 81
Appendix B 88
Appendix C 94
Appendix D 97
Appendix E 100
Appendix F 113
參考文獻 Atkinson, G.M. & Boore, D.M., 2006. Earthquake Ground Motion Prediction Equations for Eastern North America. Bulletin of the Seismological Society of America, 96(6), pp.2181–205.
Beresnev, I.A. & Wen, K.-L., 1996. Nonlinear Soil Response - A Reality? Bulletin of the Seismological Society of America, 86(6), pp.1964-78.
Beresnev, I.A., Wen, K.-L. & Yeh, Y.-T., 1995. Nonlinear Soil Amplification: Its Corroboration in Taiwan. Bulletin of the Seismological Society of America, 85(2), pp.496-515.
Boore, D.M., 1983. Stochastic Simulation of High-Frequency Ground Motions. Bulletin of Seismological Society of America, 73, pp.1865-94.
Boore, D.M., 2003. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics, 160, pp.635–76.
Boore, D.M., 2005. SMSIM — Fortran Programs for Simulating Ground Motions from Earthquakes: Version 2.3 – A Revision of OFR 96-80-A. California: Department of the Interior U.S. Geological Survey.
Boore, D.M. & Boatwright, J., 1984. Average Body - Wave Radiation Coefficients. Bulletin of the Seismological Society of America, 74, pp.1615- 1621.
Boore, D.M. & Joyner, W.B., 1991. Estimation of Ground Motion at Deep- soil Sites in Eastern North America. Bulletin of the Seismological Society of America, 81, pp.2167- 2185.
Brune, J.N., 1970. Tectonic Stress and Spectra of Seismic Shear Waves from Earthquakes. Journal of Geophysical Research, 75, pp.4997- 5009.
Chang, Y.-W. & Wen, K.-L., 2002. A Study on the Classification of Site Effects and Its Correction in Attenuation Relationship of Peak Ground Acceleration. Master Thesis. Chungli: Institute of Geophysics, National Central University. (Report in Chinese, abstract in English).
Chan, H.-K. & Wen, K.-L., 2008. The Ground Motion Potential of Peak Ground Acceleration. Master Thesis. Chungli: Institute of Geophysics, National Central University. (Report in Chinese, abstract in English).
Huang, W.-G., Huang, B.-S., Chen, K.-C., Liu, C-C. Lin, C.-R., Tsao, S.-H., Hsieh, Y.-C., and Chen, C.-H., 2008. Observations Using the Taipei Basin Broadband Downhole SeismicNetwork: The 26 December 2006, Pingtung Earthquake Doublet, Taiwan. TAO, 19(6), pp.761-66.
Huang, W.-G., Huang, B.-S., Wang, J.-H., Chen, K.-C., Wen, K.-L., Tsao, S.-J.; Hsieh, Y.-C., Chen, C.-H., 2010. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network. TAO, 21(3), pp.615-25.
IES, 2000. Strong Motion Downhole Array in Taipei Basin, http://www.earth.sinica.edu.tw/~smdmc/taipeibasin/taipeibasin.htm, Institute of Earth Sciences, Academia Sinica, Taiwan.
Idriss, I.M. & Sun, J.I., 1992. SHAKE91 A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits. Davis, California: Center for Geotechnical Modeling Department of Civil & Environmental Engineering University California.
Jean, W.-Y., 2001. Considering the Characteristic Earthquake and Site Effect for Seismic Hazard Analysis. NCREE-01-036. (Report in Chinese).
Kuo, C.-H., Wen, K.-L., Hsieh, H.-H., Lin, C.-M., Chang, T.-M., Kuo, K.-W., 2012. Site Classification and Vs30 Estimation of Free-Field TSMIP Stations using the Logging Data of EGDT. Engineering Geology, pp.129–30.
Lee, C.-P., Tsai, Y.-B. & Wen, K.-L., 2006. Analysis of Nonlinear Site Response Using the LSST Downhole Accelerometer Array Data. Soil Dynamics and Earthquake Engineering, 26, pp. 435–460.
NCREE, 2000. Engineering Geological Database for TSMIP (EGDT), http://egdt.ncree.org.tw/, National Center for Research on Earthquake Engineering, Taiwan.
Sokolov, V., 2000. Spectral Parameters of Ground Motion in Different Regions: Comparison of Empirical Models. Soil Dynamics and Earthquake Engineering, 19.
Sokolov, V., Loh, C.-H. & Jean, W.-Y., 2006. Strong Ground Motion Source Scaling and Attenuation Models For Earthquakes Located in Different Source Zones in Taiwan. In 4th International Conference on Earthquake Engineering. Taipei, Taiwan , 2006.
Sokolov, V., Loh, C.-H. & Wen, K.-L., 2001. Site-Dependent Design Input Ground Motion Estimations for the Taipei Area: A Probabilistic Approach. Probabilistic Engineering Mechanics, 16.
Sokolov, V. et al., 2009. Analysis of Taipei Basin Response for Earthquakes of Various Depths and Locations Using Empirical Data. TAO, 20(5), pp.687-702.
Su, T.-W., Lin, C.-C., Fei, L.-Y. & Liu, H.-C., 1997. Subsurface Geology and Engineering Environment of Taipei Basin. Central Geological Survey. (Report in Chinese).
Teng, L.S., Lee, C. T.; Peng, C.-H. Chen, W.-F. Chu, C.-J., 2001. Origin and Geological Evolution of the Taipei Basin, Northern Taiwan. Western Pacific Earth sciences, 1(2), pp.115-42.
Tsai, C.-C.P., 1997. Relationship of Seismic Source Scaling in the Taiwan Region. TAO, 8(1), pp.49-68.
Wang, C.-Y., Lee, Y.-H., Ge, M.-L. & Chen, Y.-L., 2004. Investigating Subsurface Structures and P- and S-wave Velocities in the Taipei Basin. 15(4), pp.609-27.
Wen, K.-L., Fei, L.-Y., Peng, H.-Y. & Liu, C.-C., 1995. Site Effect Analysis From the Records of the Wuku Downhole Array. TAO, 6(2), pp.285-98.
Wen, K.-L. & Yeh, Y.-T., 1998. Study of the Basin Effects on Seismic Waves (I). Central Geological Survey. (Report in Chinese, abstract in English).
指導教授 溫國樑(Prof. Kuo-Liang Wen) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明