參考文獻 |
[1] R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm”, Appl. Phys. Lett. 98, 201107 (2011).
[2] R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths”, Appl. Phys. Lett. 94, 063505 (2010).
[3] William Shockley and Hans J. Queiwwer, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys. 32, 510 (1961).
[4] Alexis De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, J. Phys. D: Appl. Phys. 13, 83946 (1980).
[5] Antonio Luque and Antonio Martı, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. 78, 5014 (1997).
[6] A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou and J. L. Pearson, and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence”, J. appl. Phys. 96, 903 (2004).
[7] Weiming Wang, Albert S. Lin, and Jamie D. Phillips, “Intermediate-band photovoltaic solar cell based on ZnTe:O”, Appl. Phys. Lett. 95, 011103 (2009).
[8] R. E. Dietz, D. G. Thomas, and J. J. Hopfield, “"Mirror" Absorption and Fluorescence in ZnTe”, Phys. Rev. Lett. 8, 391 (1962).
[9] N. Lo´pez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the Electronic Band Structure for Multiband Solar Cells”, Phys. Rev. Lett. 106, 028701 (2011).
[10] Jasprit Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge University Press, New York, 2003
[11] A. Martí, E. Antolín, E. Cánovas, N. López, P.G. Linares, A. Luque, C.R. Stanley, C.D. Farmer, “Elements of the design and analysis of quantum-dot intermediate band solar cells”, Thin solid film 516, 6716 (2008).
[12] R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers”, Appl. Phys. Lett. 91 243115 (2007).
[13] Voicu Popescu, Gabriel Bester, Mark C. Hanna, Andrew G. Norman, and Alex Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells”, Phys. Rev. B 78, 205321 (2008).
[14] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells “, Appl. Phys. Lett. 92, 123512 (2008).
[15] Denis Guimard, Ryo Morihara, Damien Bordel, Katsuaki Tanabe, Yuki Wakayama, Masao Nishioka, and Yasuhiko Arakawa, ” Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage”, Appl. Phys. Lett. 96, 203507 (2010).
[16] T. Sugaya, O. Numakami, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, S. Niki, “Tunnel current through a mini band in InGaAs quantum dot superlattice solar cells”, Sol. Energy Mater. Sol. Cells 95, 2920 (2011).
[17] E. Antolín, A. Martí, P. G. Linares, I. Ramiro, E. Hernández, C. D. Farmer, C. R. Stanley, and A. Luque, “Advanced in quantum dot intermediate band solar cells”, Photovoltaic Specialists Conference (PVSC) 35th IEEE, (2010).
[18] Yushuai Dai, Christopher G. Bailey, Christopher. Kerestes, David V. Forbes, and Seth M. Hubbard, “Investigation of Carrier Escape Mechanism in InAs/GaAs Quantum Dot Solar Cells”, Photovoltaic Specialists Conference (PVSC) 38th IEEE, (2012).
[19] E. Antolin, A. Marti, C.D. Farmer, P.G Linares, E. Hernandez, A. M Sanches, T. Ben, S. I. Molina, C.R. Stanley and A. Luque, "Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell," J. Appl. Phys. 108, 064513 (2010).
[20] C. Tablero, “Electronic and optical analysis of high-efficiency photovoltaic materials based on a GaN semiconductor”, Sol. Energy Mater. Sol. Cells 90, 1734 (2006).
[21] Kazunori Sato and Hiroshi Katayama-Yoshida, “Electronic and optical analysis of high-efficiency photovoltaic materials based on a GaN semiconductor”, Jpn. J. Appl. Phys. 40, L485 (2001).
[22] Jian Wang, Yucheng Xing, and Yi Luo, “Ab initio study of GaN periodically substituted by transition metal for intermediate band materials”, Phys. Status Solidi B 248, 964 (2011).
[23] E. Kulatov, H. Nakayama, H. Mariette, H. Ohta, and Yu. A. Uspenskii, ” Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn”, Phys. Rev. B 66, 045203 (2002).
[24] A. Martı´, C. Tablero, E. Antolı´n, A. Luque, R. P. Campion, S. V. Novikov, C. T. Foxon, “Potential of Mn dopedIn1-xGaxN for implementing intermediate band solar cells”, Sol. Energy Mater. Sol. Cells 93, 641 (2009).
[25] C. Tablero, A. Martí, and A. Luque, “Ionization energy levels in Mn-doped InxGa1−xN alloys”, J. Appl. Phys. 105, 033704 (2009).
[26] G. S. Song, M. Kobayashi, J. I. Hwang, T. Kataoka, M. Takizawa, A. Fujimori, T. Ohkouchi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, F.-H. Chang, L. Lee, H.-J. Lin, D. J. Huang, C. T. Chen, S. Kimura, M. Funakoshi, S. Hasegawa, and H. Asahi, “Electronic structure of Ga1−xCrxN and Si-doping effects studied by photoemission and x-ray absorption spectroscopy”, Phys. Rev. B 78, 033304 (2008).
[27] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, 1731 (2002).
[28] Jinn-Kong Sheu, Feng-Wen Huang, Yu-Hsuan Liu, P. C. Chen, Yu-Hsiang Yeh, “Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy”, Appl. Phys. Lett. 102, 071107 (2013)
[29] Feng-Wen Huang, Jinn-Kong Sheu, Ming-Lun Lee, Shang-Ju Tu, Wei-Chih Lai, Wen-Che Tsai, and Wen-Hao Chang, “Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection Optics express 19 A1211 (2011).
[30] Shu-Yen Liu, J. K. Sheu, Yu-Chuan Lin, S. J. Tu, F. W. Huang, M. L. Lee, and W. C. Lai, “Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light”, Optics express 20 A678 (2012).
[31] S. Sonoda, “Partially filled intermediate band of Cr-doped GaN films”, Appl. Phys. Lett. 100, 202101 (2012).
[32] P. Bogusławski and J. Bernholc, “Doping properties of C, Si, and Ge impurities in GaN and AlN”, Phys. Rev. B 56, 9496 (1997).
[33] W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN”, Appl. Phys. Lett. 68, 3144 (1996)
[34] J. Neugebauer and C. G. Van de Walle “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. 69, 503 (1996).
[35] K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, “Observation of Native Ga Vacancies in GaN by Positron Annihilation”, Phys. Rev. Lett. 79,3030(1997).
[36] T. Suski, P. Perlin, H. Teisseyre, M. Leszczyn´ ski, I. Grzegory, J. Jun, M. Boc´kowski, and S. Porowski, and T. D. Moustakas, “Mechanism of yellow luminescence in GaN”, Appl. Phys. Lett. 67, 2188 (1995).
[37] You Wei, Zhang Xiao-Dong, Zhang Li-Min, Yang Zhen, Bian Hai, Liu Zheng-Min, “Yellow and red luminescence in Mg-implanted GaN epitaxial films”, Nuclear Instruments and Methods in Physics Research B 264 41 (2007).
[38] F. A. Ponce, D. P. Bour, and W. Go¨ tz, and P. J. Wright, “Spatial distribution of the luminescence in GaN thin films”, Appl. Phys. Lett. 68 57 (1996).
[39] Jörg Neugebauer and Chris G. Van de Walle, “Atomic geometry and electronic structure of native defects in GaN”, Phys. Rev. B 50, 8067 (1994).
[40] M. J. Puska, C. Corbel, and R. M. Nieminen, “Positron trapping in semiconductors”, Phys. Rev. B 41, 9980 (1990).
[41] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakrishnan, and B. Santic, Phys. Rev. B 59, 5561 (1999).
[42] Sam Kyu Noh, Chul-Ro Lee and Seung Eun Park, In-Hwan Lee, In-Hoon Choi, Sung Jin Son, Kee Young Lim and Hyung Jae Lee, “Doping Characteristics of Si-doped n-GaN Epilayers Grown by Low-Pressure Metal-Organic Chemical-Vapor Deposition”, J. Korean Phys. Soc. 32, 851 (1998).
[43] Feng Qian, Gong Xin, Zhang Xiao-Ju, and Hao Yue, “Photoluminescence characteristics of GaN:Si”, Chinese Phys. 14 2133 (2005).
[44] H. P. D. Schenk, S. I. Borenstain, A. Berezin, A. Schön, E. Cheifetz, S. Khatsevich, and D. H. Rich, “Band gap narrowing and radiative efficiency of silicon doped GaN”, J. Appl. Phys. 103, 103502 (2008).
[45] In-Hwan Lee, J. J. Lee, P. Kung, F. J. Sanchez, and M. Razeghi, “Band-gap narrowing and potential fluctuation in Si-doped GaN”, Appl. Phys. Lett. 74, 102 (1999).
[46] A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, “Nature of deep center emissions in GaN”, Appl. Phys. Lett. 96, 151902 (2010).
[47] C. Hums, T. Finger, T. Hempel, J. Christen, A. Dadgar, A. Hoffmann, and A. Krost, “Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate “, J. Appl. Phys. 101, 033113 (2007).
[48] Basanta Roul, Mohana K. Rajpalke, Thirumaleshwara N. Bhat, Mahesh Kumar, A. T. Kalghatgi, S. B. Krupanidhi, Nitesh Kumar, and A. Sundaresan, “Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films”, Appl. Phys. Lett. 99, 162512 (2011).
[49] I.M. Dharmadasa, “Third generation multi-layer tandem solar cells for achieving high conversion efficiencies”, Sol. Energy Mater. Sol. Cells 85, 293 (2005).
[50] Yijun Zhang, Benkang Chang, Jun Niu, Jing Zhao, Jijun Zou, Feng Shi, and Hongchang Cheng, “High-efficiency graded band-gap AlxGa1−xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 99, 101104 (2011).
[51] Yen-Kuang Kuo, Jih-Yuan Chang, and Ya-Hsuan Shih, “Numerical Study of the Effects of Hetero-Interfaces, Polarization Charges, and Step-Graded Interlayers on the Photovoltaic Properties of (0001) Face GaN/InGaN p-i-n Solar Cell”, IEEE J. of quantum electronics 48, 367 (2012) |