博碩士論文 100324068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.217.108.11
姓名 邱顯皓(Shian-Hau Chiou)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱
(High refractive index ZrO2/acrylic nanocomposite)
相關論文
★ 均一大小奈米碳球之粒徑控制★ MFI沸石奈米結晶製備研究
★ 氧化鋅奈米粒子的表面改質與分散★ 濕法製備氧化鋅摻雜鋁之透明導電膜
★ 強吸水性透明奈米沸石膜★ 奈米氧化鋅透明導電膜的製作
★ 製作AZO透明導電膜的各種嘗試★ 奈米結晶氧化鋯合成與分散
★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質★ 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積
★ 沸石晶核的製備與排列★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備
★ 聚芳香羧酸酯之合成及性質研究★ MFI沸石超微粒子之製作
★ 四氯化鈦之控制水解研究★ 具環氧基矽烷包覆奈米粒子之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中,將奈米氧化鋯結晶粉體進行雙重改質,使可以分散於極性範圍相當大的各種有機溶劑中,並以之與不同壓克力單體混合製作出高折射率之透明光學材料。以往本實驗室大於4個碳的單一有機酸進行奈米氧化鋯改質,僅能分散在非極性溶劑(如苯,甲苯等)中。而醋酸螯合之氧化鋯則幾乎完全不分散。本次研究中,我們將已經用有機酸(乙酸、丁酸、甲基壓克力酸)改質之粉體,再以壓克力基之矽烷(3-(trimethoxysilyl) propylmethacrylate, MPTS) 進行雙重表面改質。透過此一作法可擴大粉體與更多溶劑相容。透過Hansen溶度參數(HSP)以30種溶劑來歸納其分散性質。我們並利用熱重分析(TGA),液態和固態核磁共振(NMR)分析,透過合理的計算法,可估算此兩種改質劑在奈米氧化鋯表面分別的螯合量。
經過不同有機酸與矽烷的配比,改質後奈米粉體除可同時分散於極性-非極性的溶劑,更可分散於甲基丙烯酸(MMA)、苯乙烯(styrene)與數種壓克力樹酯單體。其中含有乙酸及甲基壓克力酸之兩種粉體(ZAS,ZMS),可直接分散於含有苯基之高折射壓克力單官能機單體PHEA(2-Phenoxy ethyl acryate, EM210,折射率硬化前1.51,硬化後1.53)或雙官能機單體 TMPTA (Trimethylolpropane triacrylate, EM231,折射率硬化前1.47,硬化後1.49),達到高無機含量(55~60 wt. %)之完全無溶劑塗料。因為塗料之黏度隨氧化鋯添加量迅速增加。假若要獲得更多的無機含量,就必須借助溶劑來降低黏度。研究中又發現不論是單官能機或雙官能機的單體,若只添加單一原料,所得到之複合材料塗佈固化後,會產生折射率梯度,於低粉體添加量下更為明顯。研究中又發現不論是單官能基、三官能基的單體或混合不同單體做為混合樹酯,於低濃度下仍會得到折射率不均勻的厚膜。最終我們以商用高折射率之壓克力配方HG147(折射率硬化前1.58,硬化後1.61)並在有溶劑幫助的條件下混合約82.3 wt% 之ZMS,則可製作出折射率1.725的均勻厚膜。
摘要(英) Redispersible nanoparticle treated with dual modifiers in a broad range of solvents is a notable achievement in this work. We reported the dispersion behavior of zirconia nanoparticle by mixing grafted with one specific carboxylic acid and 3-(trimethoxysilyl)propylmethacrylate (MPTS). This is a major improvement compared to that modified with carboxylic acid along, and enable the blending with acrylate monomers. In previous works of our lab, nanoparticles grafted with single carboxylic acid with more than 4 carbons could only be dispersed in non-polar solvents such as benzene, toluene, while that modified with acetic acid could not be dispersed in any organic solvent. After further modifying with MPTS, it became dispersible in both polar and non-polar solvents. In test of fillers in 30 common solvents with Hansen solubility parameters (HSP), it was found that the compatible solvents can be represented better with two spheres in the HSP space than just a single sphere, as done in the original HSP theory.
This study reported three kinds of dual modifier nano-zirconia, respectively, to distinguish between organic acids: acetic acid / MPTS (ZAS), butyric acid / MPTS (ZBS), acrylic acid / MPTS (ZMS), these powders appearing a wide range of organic solvent dispersion (polar - non-polar), and the number of species dispersible resin monomers was special, such as: methyl methacrylate (MMA), styrene (styrene) and acrylic monomers, and ZAS and ZMS dispersed in PHEA (EM210) with high content (55 ~ 60 wt.%), but we couldn’t obtain uniform film without index gradient at low zirconia content . Finally, we use commercially sol HG147 with ZMS (82.3 wt.%) in EA, the highest refractive index 1.725 thick film obtained.
關鍵字(中) ★ 氧化鋯
★ 折射率
★ 分散
關鍵字(英) ★ zirconia
★ refractive index
★ disoersion
論文目次 Table of contents
摘要 I
Abstract III
List of Figures V
List of Tables VII
Chapter1 Introduction 1
1-1Background 1
1-2 Objcective 4
Chapter2 Synthesis and modification of Zirconia nano-crystals 5
2-1 Chemicals 5
2-2 Prepare of zirconia fillers and its surface modification 6
2-2-1 Preparation of zirconia nanocrystal 6
2-2-2 Surface modified by Carboxylic acid 7
2-2-3 Silane surface modification 7
2-3 Prepare of the composite 10
2-3-1 Prepare of the coating sols 10
2-3-2 Coating of nanocomposite films 11
2-4 Instruments analysis 11
Chapter3 Results and discussions 13
3-1 Physicochemical characteristics of the modified Zirconia filler 13
3.1.1 Chemical structure of the surface moieties on zirconia 13
3-1-2 Particle size distribution 17
3-1-3 Hansen solubility parameter 18
3-2 Physical & chemical characteristics of composite 22
3-2-1 Filler density 22
3-2-2 Filler refractive index 23
3-2-3 Characteristics of nanocomposites 24
Chapter4 Conclusion 28
Chapter5 Future work 30
Reference list 46
參考文獻 Reference
1. Mammeri, F., et al., Mechanical properties of hybrid organic–inorganic materials. Journal of materials chemistry, 2005. 15(35-36): p. 3787-3811.
2. Mark, J.E., Some novel polymeric nanocomposites. Accounts of chemical research, 2006. 39(12): p. 881-888.
3. Kickelbick, G., Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 2003. 28(1): p. 83-114.
4. Lu, C.L. and B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. Journal of Materials Chemistry, 2009. 19(19): p. 2884-2901.
5. Tsuzuki, T., Abnormal Transmittance of Refractive‐Index‐Modified ZnO/Organic Hybrid Films. Macromolecular materials and engineering, 2008. 293(2): p. 109-113.
6. 白謹通, Preparation of dispersible c-ZrO2 nanocrystals. 中央大學, 2012.
7. Willis, A.L., N.J. Turro, and S. O’Brien, Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals. Chemistry of Materials, 2005. 17(24): p. 5970-5975.
8. Turner, M.R., E. Duguet, and C. Labrugere, Characterization of silane-modified ZrO2 powder surfaces. Surface and Interface Analysis, 1997. 25(12): p. 917-923.
9. Wisser, F.M., et al., Detection of surface silanol groups on pristine and functionalized silica mixed oxides and zirconia. Journal of Colloid and Interface Science, 2012. 374(1): p. 77-82.
10. C.M.Hansen, Hansen Solubility Parameters: A User’s Handbook. CRC press, Taylor & Francis Group, Boca Raton FL, 2007.
11. Iijima, M., et al., Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites. Journal of the American Chemical Society, 2009. 131(45): p. 16342-16343.
12. Iijima, M., et al., Effect of additive ratio of mixed silane alkoxides on reactivity with TiO2 nanoparticle surface and their stability in organic solvents. Advanced Powder Technology, 2011. 22(5): p. 663-668.
指導教授 蔣孝澈 審核日期 2013-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明