博碩士論文 100329024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.147.103.8
姓名 畢家榮(Jia-rong Bi)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 摻雜氫化奈米晶矽薄膜製備及其應用於矽基太陽能電池
(Fabrication of Hydrogenated Nanocrystalline Silicon Doped Layer and It Applocation for HIT Solar Cells)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) a-Si:H/c-Si 異質接面(Heterojunction with Intrinsic Thin Layer, HIT)太陽電池是目前太陽能電池領域中最熱門的研究之一,主要是因為異質接面太陽電池穩定性與高效率,並且強調在低溫(< 200 °C)製程,低溫製程優點:(1)能夠使用較薄矽晶片(<100 μm)來降低成本,因為薄晶片的電池製作,高溫會使晶片產生彎曲。(2)低溫製程不會造成氫鍵斷掉而鈍化效果變差。(3)低溫製程減少能源成本。但是a-Si:H 層的加入會造成短波長光吸收,視為其短路電流較傳統太陽能電池低的原因之一。
本論文主要以電子迴旋共振化學氣相沉積系統(Electron Cyclotron Resonance Chemical Vapor Deposition, ECR-CVD)製備高能隙之硼摻雜奈米晶矽(Nano-crystalline silicon, nc-Si: H)薄膜以及p-nc-Si:H/i-a-SiC:H/n-c-Si/i-a-SiC:H/
n+-nc-Si:H結構之異質接面太陽電池。增寬能隙減少窗口層對光吸收和改善摻雜層電性是本篇主要研究薄膜的方向,奈米晶矽薄膜具有的優點:(1)寬能隙能夠減少對光吸收,以增加太陽能電池的吸光率,以獲得較高短路電流,而且寬能隙還能夠增加內建電場,提高太陽電池之開路電壓。(2)奈米晶矽薄膜相較於氫化非晶矽薄膜具有更好電穩定性及低的電阻率,較能夠抵抗光照衰退和較穩定的太陽能電池之填滿因子。(3)奈米晶矽薄膜相較於微晶矽薄膜,具有好的界面匹配,能夠減少表面複合電流產生,提高開路電壓。
本篇使用ECR-CVD來製備及研究摻雜奈米晶矽薄膜和異質接面太陽能電池。ECR-CVD具有:(1)高密度電漿源導致高氣體解離率,降低氣體製程成本以及增加製程速率。(2) 低的電子溫度及低離子轟擊。(3) 無電極汙染。等優點。因此以ECR-CVD來製備摻雜奈米晶矽薄膜,可以降低對薄膜的結構缺陷和表面損害。在本篇論文中我們在玻璃基板上以較低的氫稀釋比成長硼摻雜奈米晶矽薄膜。其結晶率為50.6 %、晶粒大小為5.3 nm、光學能隙為2.1 eV、以及高電導率5.9×101 ohm-1cm-1(載子濃度為2.7×1020 cm-3、載子遷移率為1.49 cm2/Vs)。
除了成功製備高導電率、寬能隙之硼摻雜奈米晶矽薄膜外,我們也將其應用於矽晶異質接面太陽能電池,在p-nc-Si:H/i-a-SiC:H/n-c-Si/i-a-SiC:H/n+-nc-Si:H平面結構,轉換效率可達12.7 % (開路電壓Voc = 594 mV,短路電流 Jsc =29.8 mA/cm2,填充因子FF = 71.7%)。
摘要(英) Heterojunction with intrinsic thin layer (HIT) solar cell is currently one of the most popular researches in photovoltaic. The low temperature growth (< 200 °C) of high efficiency of the HIT solar cells has many advantages: (1) the using of thin silicon wafers (<100 μm) can reduce costs. (2) Low temperature process cannot reduce the passivation quality. (3) Low temperature process can reduce energy costs. However, the adding of a-Si:H will cause the short wavelength light to reduce the lower short circuit current density than the conventional silicon solar cells.
In this thesis, we use the Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD) to fabricate the boron-doped hydrogenated nanocrystalline silicon thin films (p-nc-Si:H) and use it to be the window layer and back surface field layer of HIT solar cells. The wider bandgap of nc-Si:H can not only result the highly transparent to enhance the absorption of absorber, but also enhance the build-in electrical field to increase the open circuit voltage. Comparing with the a-Si:H, the nc-Si:H is more stable and highly conductivity. Furthermore, the nc-Si:H can prevent the mismatch of interface which can reduce the recombination effect to enhance the open circuit voltage in the solar cells.
The high plasma density and low ion bombardment of ECR-CVD is suitable to growth the silicon-based thin films. In this study, we used the ECR-CVD to deposit the boron-doped nc-Si:H thin films on glass substrates and investigate the effect of hydrogen dilution ratio, flow rate of B2H6, working pressure, and annealing process on the film qualities. The high crystallinity (50.6 %), optical bandgap (2.1 eV), and highly conductivity (9×101 ohm-1cm-1) can be obtained.
Moreover, we apply the nc-Si:H thin films to fabricate the HIT solar cells (p-nc-Si:H/i-a-SiC:H/n-c-Si/i-a-SiC:H/n+-nc-Si:H). The 12.7 % (Voc = 594 mV, Jsc =29.8 mA/cm2, FF =71.7%) of conversion efficiency can be achieved with active area (0.73 cm2)and planar sturctuer.
關鍵字(中) ★ 奈米晶矽
★ 太陽能電池
★ 電子迴旋共振化學氣相沉積
關鍵字(英) ★ Hydrogenated Nanocrystalline Silicon
★ Solar Cells
★ ECRCVD
論文目次 目錄
摘要…………………………………………………………………………………….i
Abstract………………………………………………………………………………..ii
致謝……………………………………….…………………………………………..iii
目錄………………………..…….……………………………..…………...………...iv
圖目錄……………………………………………………………………………..…viii
表目錄………………………………………………………………………………...xii
第一章 緒論………………………………………………………………..…………1
1-1 太陽能的發展…………………………………………………………………… 1
1-2 太陽能種類、效率、成本比較………………………………………………….2
1-3 高效率單晶矽太陽能電池種類………………………………………………….3
1-4 異質接面太陽能電池介紹……………………………………………………….4
1-5 傳統高溫擴散太陽能電池與異質接面太陽能電池比較……………………….5
1-6 研究目的………………………………………………………………………….7
1-7 論文架構………………………………………………………………………….8
第二章 文獻整理與回顧……………………………………………………………10
2-1 矽薄膜成長原理………………………………………………………………...10
2-2 奈米晶矽薄膜介紹……………………………………………………………...13
2-3奈米晶矽薄膜製備方式比較……………………………………………………15
2-4 奈米晶矽薄膜應用於異質接面太陽能電池…………………………………...17
2-4.1 太陽能電池原理…………………………………………………………17
2-4.2 奈米晶矽薄膜應用於異質接面太陽能電池……………………………22
第三章 實驗量測分析與設備………………………………………………………24
3-1量測儀器介紹……………………………………………………………………24
3-1.1 光放射光譜儀……………………………………………………………24
3-1.2 表面輪廓儀………………………………………………………………26
3-1.3 高解析度X射線繞射分析儀……………………………………………27
3-1.4 拉曼光譜儀………………………………………………………………29
3-1.5 傅里葉變換紅外光譜……………………………………………………31
3-1.6 紫外光-可見光-近紅外光光譜儀……………………………………….32
3-1.7 光激發螢光………………………………………………………………34
3-1.8 霍爾量測…………………………………………………………………35
3-1.9 原子力顯微鏡……………………………………………………………36
3-1.10 光電導生命週期量測儀………………………………………………..38
3-1.11 光電轉換效率…………………………………………………………..40
3-1.12 太陽光模擬器…………………………………………………………..41
3-2製程設備介紹……………………………………………………………………43
3-2.1 電子迴旋共振化學氣相沉積法設備系統………………………………43
3-2.2 ECR-CVD 製程原理…………………………………………………….44
3-2.3 ECR-CVD設備系統……………………………………………………..45
3-2.4 離子濺鍍機………………………………………………………………47
3-2.5 電子槍蒸鍍系統…………………………………………………………48
3-2.6 快速退火爐………………………………………………………………49
第四章 奈米晶矽薄膜製備與結果…………………………………………………50
4-1 奈米晶矽薄膜製備流程………………………………………………………...50
4-2 硼摻雜奈米晶矽薄膜製備與結果…...……………………….…….…..….…...51
4-2.1奈米晶矽薄膜成長不同基板上結構情形……………………………….51
4-2.2 氫稀釋比對硼摻雜奈米晶矽薄膜影響…………………………………53
4-2.3 工作壓力對硼摻雜奈米晶矽薄膜影響…………………………………65
4-2.4 摻雜氣體稀釋比對硼摻雜奈米晶矽薄膜影響…………………………73
4-2.5 不同溫度退火對硼摻雜奈米晶矽薄膜影響……………………………81
第五章 異質接面太陽能電池結果與討論…………………………………………86
5-1 異質接面太陽能電池製備流程………………………………...………………86
5-2 摻雜奈米晶矽鈍化效果………………………………………………………...87
5-3 摻雜奈米晶矽應用於異質接面太陽能電池………………...…………………88
5-3.1 調變硼摻雜奈米晶矽射極層氫稀釋比的影響…………………………89
5-3.2 調變磷摻雜奈米晶矽射極層厚度的影響………………………………91
5-3.3 異質接面太陽能電池優化結果…………………………………………93
第六章 結論與未來改善……………………………………………………………94
參考文獻……………………………………………………………………………..96
參考文獻 參考文獻
[1]黃惠良,「太陽陽能電池」,五南出版社,2008年12月。
[2] M. A. Green, et al., "Solar cell efficiency tables (version 40)," Progress in Photovoltaics, vol. 20, pp. 606-614, Aug 2012
[3] 黃建昇,結晶矽太陽能電池發展現況,工業材料,203期,92年11月。
[4] T. Sawada, et al., “High-efficiency a-Si/c-Si heterojunction solar cell,” IEEE
Photovoltaic Specialists Conference, 1994.
[5] H. Sakata, et al., “Sanyo’s Challenges to the Development of High-efficiency HIT
Solar Cells and the Expansion of HIT Business,” IEEE 4th World Conference, 2006.
[6] A. Lambertz, et al., "Hydrogenated amorphous silicon oxide containing a
microcrystalline silicon phase and usage as an intermediate reflector in thin-film
silicon solar cells," Journal of Applied Physics, vol. 109, Jun 1 2011.
[7] 周首成,「以射頻矽甲烷電漿輔助化學氣相沉積法製備非晶矽薄膜太陽能電池元件之研究」,國立台灣科技大學,碩士論文 ,2010年。
[8] K. Adhikary and S. Ray, "Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells," Journal of Non-Crystalline Solids, vol. 353, pp. 2289-2294, Jul 1 2007.
[9] Z. H. Hu, et al., "Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells," Journal of Non-Crystalline Solids, vol. 352, pp. 1900-1903, Jun 15 2006.
[10] P. Kumar, et al., "Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells," Thin Solid Films, vol. 501, pp. 260-263, Apr 20 2006.
[11] L. Raniero, et al., "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell," Solar Energy Materials and Solar Cells, vol. 87, pp. 349-355, May 2005.
[12] S. A. Moshkalyov, et al., "Deposition of silicon nitride by low-pressure electron cyclotron resonance plasma enhanced chemical vapor deposition in N-2/Ar/SiH4," Journal of Vacuum Science & Technology B, vol. 15, pp. 2682-2687, Nov-Dec 1997.
[13] D. H. Thang, et al., "Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H-2 mixtures," Thin Solid Films, vol. 516, pp. 4452-4455, May 1
2008.
[14] J. Venables, et al., “Nucleation and Growth of Thin films,” Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[15] A. Matsuda, "Thin-film silicon - Growth process and solar cell application," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 7909-7920, Dec 2004.
[16] M.J. Kushner, et al.,“On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H,”J.J.A.P., Vol 62,pp. 2803–2811, 1987.
[17] 施智仁,「脈衝調變RF電漿對氫化非晶矽太陽能電池本質層薄膜的價態與穩定性之影響」,私立大同大學,碩士論文 ,2007年。
[18] 陳治明,「非晶半導體材料與器件」,科學出版社,北京1991年。
[19] A. Matsuda, "Microcrystalline silicon. Growth and device application," Journal of Non-Crystalline Solids, vol. 338, pp. 1-12, Jun 15 2004.
[20] W. Li, et al., "Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure," Journal of Non-Crystalline Solids, vol. 356, pp. 2552-2556, Oct 1 2010.
[21] L. Q. Guo, et al., "Effects of high hydrogen dilution ratio on surface topography and mechanical properties of hydrogenated nanocrystalline silicon thin films," Thin Solid Films, vol. 519, pp. 6039-6043, Jul 1 2011.
[22] W. Li, et al., "Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure," Journal of Non-Crystalline Solids, vol. 356, pp. 2552-2556, Oct 1 2010.
[23] H. Y. Mao, et al., "Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications," Thin Solid Films, vol. 520, pp. 5200-5205, Jun 1 2012.
[24] N. A. Bakr, et al., "Role of argon in hot wire chemical vapor deposition of hydrogenated nanocrystalline silicon thin films," Thin Solid Films, vol. 519, pp. 3501-3508, Mar 31 2011.
[25] V.S. Waman, et al., “Nanostructured Hydrogenated Silicon Films by Hot-Wire Chemical Vapor Deposition: the Influence of Substrate Temperature on Material Properties,” Journal of Nano- and Electronic Physics, vol. 3, 2011.
[26] W. S. Yan, et al., "Highly doped p-type nanocrystalline silicon thin films
fabricated by low-frequency inductively coupled plasma without H-2 dilution,"
Journal of Applied Physics, vol. 110, Sep 15 2011.
[27] V. S. Waman, et al., "Highly conducting phosphorous doped n-type c-Si:H
films by HW-CVD for c-Si heterojunction solar cells," Rsc Advances, vol. 2, pp.
9873-9880, 2012.
[27] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[28] H. Kliung, et al.,” X-ray Diffraction Procedures,” 1974.
[29] M. Marinov and N. Zotov, "Model investigation of the Raman spectra of amorphous silicon," Physical Review B, vol. 55, pp. 2938-2944, Feb 1 1997.
[30] N. M. Liao, et al., "Electron irradiation effects on the properties of heavily phosphorus-doped a-Si : H films prepared from undiluted silane," Journal of Physics D-Applied Physics, vol. 41, Oct 21 2008.
[31] G. Z. Yue, et al., "Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon," Applied Physics Letters, vol. 75, pp. 492-494, Jul 26 1999.
[32] Z. Li, et al., "Raman characterization of the structural evolution in amorphous and partially nanocrystalline hydrogenated silicon thin films prepared by PECVD," Journal of Raman Spectroscopy, vol. 42, pp. 415-421, Mar 2011.
[33] E. Bustarret, et al., “Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy,” Applied Physics Letters, vol. 52, pp. 1675-1677, 1988.
[34] Y. L. He, et al., "The Structure and Properties of Nanosize Crystalline Silicon Films," Journal of Applied Physics, vol. 75, pp. 797-803, Jan 15 1994.
[35] J. Meier, et al., "Complete Microcrystalline P-I-N Solar-Cell - Crystalline or Amorphous Cell Behavior," Applied Physics Letters, vol. 65, pp. 860-862, Aug 15 1994.
[36] N. Maley, "Critical Investigation of the Infrared-Transmission-Data Analysis of Hydrogenated Amorphous-Silicon Alloys," Physical Review B, vol. 46, pp. 2078-2085, Jul 15 1992.
[37] M. B. Tzolov, et al., "Analysis of the Infrared Transmission Data of Amorphous-Silicon and Amorphous-Silicon Alloy-Films," Journal of Physics D-Applied Physics, vol. 26, pp. 111-118, Jan 14 1993.
[38] M. Ablikim, et al., "Evidence for psi ’ Decays into gamma pi(0) and gamma eta," Physical Review Letters, vol. 105, Dec 20 2010.
[39] A. Remolina, et al., "Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor," Nanotechnology, vol. 20, Jun 17 2009.
[40] J. Tauc, et al.,” States in the gap,” Journal of Non-Crystalline Solids vol. 8-10, pp. 569-585. 1977.
[41] S.M.SZE,”Semiconductor Devices Physics and technology”pp.55~56, 2001.
[42] Donald A.Neamen,”Semiconductor Physics and Devices”,pp.177~180, 2003.
[43] G.J. Wilfried, et al., “Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cell,”.
[44]P. Kumar, F. Zhu, A. Madan, “Electrical and structural properties of
nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells
81 prepared by very high frequency plasma chemical vapor deposition”,
International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[45] S.K. Ram, et al.,” Plasma emission diagnostics during fast deposition of
microcrystalline siliconthin films in matrix distributed electron cyclotron resonance
plasma CVD System,” Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[46] A. M. Funde, et al., "Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si : H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)," Solar Energy Materials and Solar Cells, vol. 92, pp. 1217-1223, Oct 2008.
[47] K. H. Li and W. Z. Shen, "Uniformity and bandgap engineering in hydrogenated nanocrystalline silicon thin films by phosphorus doping for solar cell application," Journal of Applied Physics, vol. 106, Sep 15 2009.
[48] 施敏,「半導體元件物理學」,國立交通大學出版社,2009年4月。
指導教授 張正陽(Jeng-yang Chang) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明