博碩士論文 982206029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.118.184.211
姓名 蔡寳皇(Pao-huang Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基太陽能電池之元件模擬與分析
(Device Modeling and Analysis of Silicon-Based Solar Cells)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,各種物理特性對矽基太陽能電池所產生的影響引起廣泛的研究,其中磊晶矽太陽能電池與異質接面太陽能電池均具有能在低溫下被製作,低成本且高效率之優點。磊晶矽太陽能電池可在很薄的射極層下,具有高摻雜之效果,也由於磊晶的關係,使得短路電流可以達到與傳統矽基太陽能電池一般之水平,相較之下,雖然異質接面太陽能電池之射極層為高吸收係數材料,導致短路電流較低,但由於射極層為高能隙之材料,可使異質接面太陽能電池擁有高開路電壓之優點。因此,我們將針對短路電流的部分作為改善的目標,其採取的方法為將射極層之材料替換為高能隙且低吸收係數材料,非晶碳化矽(a-SiC),而後,利用鍺(Germanium)吸收近紅外光之特性,將矽鍺(Si1-xGex)材料加入當吸收層之一部分,以提高短路電流。在本論文中,我們將利用二維模擬軟體Synopsys TCAD集中於探討各種不同結構參數對於磊晶矽太陽能電池與異質接面太陽能電池在光電特性上之影響。
首先,我們建立一磊晶矽太陽能電池,其結構為ITO/ emitter (p+)/ base (n)/ BSF (n+)/ Ti/Ag,並針對各種不同參數作特性表現探討,其中參數包含厚度、摻雜濃度、復合速率以及功函數。從研究結果可以發現,當emitter (p+)/ base (n)/ BSF (n+)厚度依序為10 nm/300 μm/50 nm,摻雜濃度為1×1021/1.6×1015/1×1021 (cm-3) 及base兩端之接面復合速率為102 cm/sec時,為磊晶矽太陽能電池最佳化後之結構參數,其效率可高達21.2 %。除此之外,從ITO的功函數對元件特性的關係結果中,我們可以作出以下結論:為了達到歐姆接觸且有較好的電性,與p型摻雜接觸時,ITO之功函數須大於所接觸之半導體功函數,換言之,與n型摻雜接觸時,ITO之功函數則須小於所接觸之半導體功函數。
第二部分,我們建立一異質接面太陽能電池,其結構為ITO/ a-SiC (p)/ a-SiC (i)/ c-Si (n)/ a-Si (n+),並針對其厚度、摻雜濃度、缺陷能態密度以及能隙作為探討,根據模擬結果可以發現,當以a-SiC/c-Si的結構取代a-Si/c-Si時,短路電流可提升1.7 mA/cm2,而加入Si1-xGex作為吸收層時,當Ge含量為91 %,短路電流可高達46.23 mA/cm2。
摘要(英) Recently, the effects of physical properties on silicon-based solar cells have been extensively researched such as the epitaxial silicon solar cell and hetero-junction solar cell which have been produced at low temperatures, low cost and high efficiency. The high doping concentration of an emitter layer in the epitaxial silicon solar cell can be used to form an ultra-shallow junction to obtain a high short current density. For the hetero-junction solar cell, the absorption in a-Si:H will results the lower short current density than the conventional silicon solar cells. Therefore, we use the materials of a-SiC and germanium in the HIT solar cell to enhance the Jsc. In this thesis, we focus on the electrical performance of structural parameters and two-dimensional device modeling for epitaxial silicon solar cell and hetero-junction solar cell are carried out by using Synopsys Technology Computer Aided Design (TCAD) simulation program.
First, we study the performance an emitter (p+)/ base (n)/ BSF (n+) epitaxial silicon solar cell with various parameters, such as the thickness, the doping concentration, the surface recombination velocity, and the work function. The optimal efficiency of 21.2 % can be achieved with 10 nm/300 μm/50 nm, doping concentration of 1×1021/1.6×1015/1×1021 (cm-3) and, the surface recombination velocity of emitter/base and base/BSF are 102 cm/sec.
Nevertheless, from the results of the cells with different ITO work function to achieve ohmic contact, if ITO contacted with p-doped layer, the ITO work function need to lager than the work function of semiconductor. On the other hand, ITO contacted with n-doped layer, the ITO work function need to smaller than the work function of semiconductor.
Second, we demonstrate an a-SiC (p)/ a-SiC (i)/ c-Si (n)/ a-Si (n+) hetero-junction solar cell. We investigate the effect of the thickness, the doping concentration, density of state, and band gap on the performance of the solar cell. According to the simulation results, the structure of a-SiC/c-Si can improve the Jsc of 1.7 mA/cm2. Then, the Jsc can be improved to 46.23 mA/cm2 by using Si0.09Ge0.91 in the HIT solar cell to absorb infared of sunlight.
關鍵字(中) ★ 矽基太陽能電池
★ 磊晶矽太陽能電池
★ 異質接面太陽能電池
關鍵字(英) ★ TCAD simulation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目標 1
1.3 論文架構 5
第二章 文獻回顧與基本原理 6
2.1 太陽能電池種類 6
2.1.1 單晶矽太陽能電池 7
2.1.2 多晶矽太陽能電池 7
2.1.3 非晶矽太陽能電池 7
2.2 太陽能電池基本原理 9
2.3 太陽光譜 10
2.4 太陽能電池效能 12
2.4.1 電流-電壓曲線 12
2.4.2 量子效率 14
2.5 產生(Generation)與復合(Recombination) 15
2.5.1 產生 15
2.5.2 復合 16
2.6 功函數(Work function) 17
第三章 元件模擬軟體之介紹 20
3.1 前言 20
3.2 原理 20
3.3 模擬方法 21
3.3.1 Sentaurus Workbench (SWB) 21
3.3.2 Structure Editor (SDE) 21
3.3.3 Sentaurus Device (SDEVICE) 22
3.3.4 Tecplot SV、Inspect 22
3.4 光傳遞模型 23
第四章 磊晶矽太陽能電池之模擬 25
4.1 模擬模型與參數 26
4.2厚度及濃度對元件特性之影響 27
4.3 復合速率對元件特性之影響 32
4.4 功函數對元件特性之影響 35
4.5 與實際結果之比較 40
4.6 優化之結果 42
第五章 異質接面太陽能電池之模擬 44
5.1 模擬模型與參數 46
5.2 厚度對元件特性之影響 48
5.3 摻雜濃度對元件特性之影響 57
5.4 缺陷能態密度對元件特性之影響 61
5.5 能隙對元件特性之影響 63
5.6 SiGe應用於HIT 66
5.6.1 不同矽鍺厚度與含量對元件特性之影響 68
5.6.2 不同c-Si (p+) 摻雜濃度對元件特性之影響 74
5.7 優化之結果 75
第六章 結論 77
6.1 結論 77
6.2 未來展望 80
參考文獻 81
參考文獻 [1] 「能源產業技術白皮書」, 經濟部能源局, (2010).
[2] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell, " Sol Energ Mat Sol C, 93 670-673, (2009).
[3] A. Samanta, and D. Das, "Optical, electrical and structural properties of SiO : H films prepared from He dilution to the SiH4 plasma," J Phys D Appl Phys 42 (2009).
[4] Sanyo, "Sanyo Electrical Corporation," Japan, (2005).
[5] L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, "Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV," Thin Solid Films 511, 21-25 (2006).
[6] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE. Photovoltaic Energy Conversion, pp. 1455–1460 (2006).
[7] 工業技術研究院, "Introduction of solar cell, " (1996).
[8] M. Labrune, M. Moreno, and P. R. I. Cabarrocas, "Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175 degrees C by rf-PECVD," Thin Solid Films 518, 2528-2530 (2010).
[9] 陳財福, 「太陽光電能供電與照明系統綜論」, 全華科技圖書股份有限公司, (2007).
[10] 莊嘉琛, 「太陽能工程-太陽電池篇」, 全華科技圖書股份有限公司, (2003).
[11] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 41) , " Progress in Photovoltaics: Research and Applications, Vol. 21, pp.1-11, (2013).
[12] D. L. Staebler, and C. R. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si, " Appl. Phys. Lett., Vol. 31, pp. 292, (1977).
[13] C. R. Wronski, "The light-induced changes in a-Si:H materials and solar cells, " Mat. Res. Soc. Symp. Proc. Vol. 469, pp.7, (1997).
[14] 黃惠良, 「太陽電池」, 五南出版社 (2008).
[15] M. A. Green, "Solar Cells Operating Principles, Technology, and System Application, " University of New South Wakes Press, (1982).
[16] 楊德仁, 顏怡文,「太陽能電池材料」, 五南圖書出版公司, 台北, 第71-75頁, (2008).
[17] Synopsys, "Sentaurus Device User Guide Version D-2010.06, " (2010).
[18] D. A. Neamen, "Semiconductor Physics and Device," NY, pp.254-259 (2002).
[19] M. Ichimura, M. Hirano, N. Kato, E. Arai, H. Takamatsu, and S. Sumie, "Control of surface recombination of Si wafers by an external electrode," Jpn J Appl Phys 2 38, L292-L294 (1999).
[20] B. Adamowicz, and H. Hasegawa, "Computer analysis of surface recombination process at Si and compound semiconductor surfaces and behavior of surface recombination velocity," Jpn J Appl Phys 1 37, 1631-1637 (1998).
[21] 李玉華, 「透明導電膜及其應用」, pp. 94-102, (1990).
[22] G. Cankaya, and N. Ucar, "Schottky barrier height dependence on the metal work function for p-type Si Schottky diodes," Z Naturforsch A 59, 795-798 (2004).
[23] T. Sawada, N. Terada, S. Tsuge, B.Toshiaki, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano, “High-Efficiency a-Si/c-Si Heterojunction Solar Cell,” Conf. Record of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, pp. 1219-1226, Dec. (1994).
[24] C. P. Lund, K. Luczak, T. Pryor, J. C. L. Cornish, P. J. Jennings, P. Knipe, and F. Ahjum, "Field and laboratory studies of the stability of amorphous silicon solar cells and modules," Renew Energ 22, 287-294 (2001).
[25] M. C. Delfina, "Silicon heterojunction solar cells obtained by Hot-wire CVD, " Department d’Enginyeria ElectrO`nica, Universitat Polite `cnica De Catalunya, (2008).
[26] Virginia Semiconductor, Inc. "Basic Crystallographic Definitions and Properties of Si, SiGe, and Ge, " June (2002).
[27] C. H. Lin, "Si/Ge/Si double heterojunction solar cells," Thin Solid Films 518, S255-S258 (2010).
[28] S. A. Hadi, P. Hashemi, A. Nayfeh, "Thin-Film a-Si/c-Si/c-Si1-xGex/c-Si Heterojunction Solar Cells: Design and Material Quality Requirements," 220th ECS Meeting, (2011).
指導教授 張正陽(Jenq-yang Chang) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明