參考文獻 |
1. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74: 417-433.
2. Wang J, Wong ES, Whitley JC, Li J, Stringer JM, et al. (2011) Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One 6: e24030.
3. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37: D933-937.
4. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
5. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24: 1551-1557.
6. Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS (2011) Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS One 6: e28197.
7. Ho YH, Sung TC, Chen CS (2012) Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 11: M111 014720.
8. Park SC, Park Y, Hahm KS (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12: 5971-5992.
9. Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758: 1184-1202.
10. Sahl HG, Jack RW, Bierbaum G (1995) Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230: 827-853.
11. Brotz H, Bierbaum G, Markus A, Molitor E, Sahl HG (1995) Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism? Antimicrob Agents Chemother 39: 714-719.
12. Molitor E, Kluczny C, Brotz H, Bierbaum G, Jack R, et al. (1996) Effects of the lantibiotic mersacidin on the morphology of staphylococci. Zentralbl Bakteriol 284: 318-328.
13. Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42: 154-160.
14. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, et al. (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76: 1427-1435.
15. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, et al. (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84: 553-561.
16. de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, et al. (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584: 1543-1548.
17. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244: 253-257.
18. Yi GS, Park CB, Kim SC, Cheong C (1996) Solution structure of an antimicrobial peptide buforin II. FEBS Lett 398: 87-90.
19. Uyterhoeven ET, Butler CH, Ko D, Elmore DE (2008) Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett 582: 1715-1718.
20. Yonezawa A, Kuwahara J, Fujii N, Sugiura Y (1992) Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31: 2998-3004.
21. Masuda K, Ohta M, Ito M, Ohsuka S, Kaneda T, et al. (1994) Bactericidal action of tachyplesin I against oral streptococci. Oral Microbiol Immunol 9: 77-80.
22. Yonezawa A, Sugiura Y (1992) Tachyplesin I as a model peptide for antiparallel beta-sheet DNA binding motif. Nucleic Acids Symp Ser: 161-162.
23. Kawano K, Yoneya T, Miyata T, Yoshikawa K, Tokunaga F, et al. (1990) Antimicrobial peptide, tachyplesin I, isolated from hemocytes of the horseshoe crab (Tachypleus tridentatus). NMR determination of the beta-sheet structure. J Biol Chem 265: 15365-15367.
24. Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, et al. (2006) Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry 45: 6529-6540.
25. Doherty T, Waring AJ, Hong M (2006) Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR. Biochim Biophys Acta 1758: 1285-1291.
26. Rao AG (1999) Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys 361: 127-134.
27. Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K (2007) Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta 1768: 1160-1169.
28. Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, et al. (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33: 4053-4064.
29. Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, et al. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267: 4292-4295.
30. van Abel RJ, Tang YQ, Rao VS, Dobbs CH, Tran D, et al. (1995) Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. Int J Pept Protein Res 45: 401-409.
31. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160: 91-96.
32. del Castillo FJ, del Castillo I, Moreno F (2001) Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J Bacteriol 183: 2137-2140.
33. Vizan JL, Hernandez-Chico C, del Castillo I, Moreno F (1991) The peptide antibiotic microcin B17 induces double-strand cleavage of DNA mediated by E. coli DNA gyrase. EMBO J 10: 467-476.
34. Pierrat OA, Maxwell A (2005) Evidence for the role of DNA strand passage in the mechanism of action of microcin B17 on DNA gyrase. Biochemistry 44: 4204-4215.
35. Parks WM, Bottrill AR, Pierrat OA, Durrant MC, Maxwell A (2007) The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89: 500-507.
36. Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14: 739-751.
37. Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, et al. (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125: 12382-12383.
38. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, et al. (2004) Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. Mol Cell 14: 753-762.
39. Yuzenkova J, Delgado M, Nechaev S, Savalia D, Epshtein V, et al. (2002) Mutations of bacterial RNA polymerase leading to resistance to microcin j25. J Biol Chem 277: 50867-50875.
40. Chesnokova LS, Slepenkov SV, Witt SN (2004) The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett 565: 65-69.
41. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, et al. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40: 3016-3026.
42. Longhi C, Conte MP, Bellamy W, Seganti L, Valenti P (1994) Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Med Microbiol Immunol 183: 77-85.
43. Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki K, et al. (1997) Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn J Cancer Res 88: 184-190.
44. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37: 4288-4298.
45. Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237: 377-384.
46. Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240: 532-539.
47. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, et al. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim Biophys Acta 1760: 1732-1740.
48. Ghiselli R, Giacometti A, Cirioni O, Circo R, Mocchegiani F, et al. (2003) Neutralization of endotoxin in vitro and in vivo by Bac7(1-35), a proline-rich antibacterial peptide. Shock 19: 577-581.
49. Tani A, Lee S, Oishi O, Aoyagi H, Ohno M (1995) Interaction of the fragments characteristic of bactenecin 7 with phospholipid bilayers and their antimicrobial activity. J Biochem 117: 560-565.
50. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61: 2978-2984.
51. Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, et al. (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202: 849-854.
52. Gudmundsson GH, Magnusson KP, Chowdhary BP, Johansson M, Andersson L, et al. (1995) Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc Natl Acad Sci U S A 92: 7085-7089.
53. Jia X, Patrzykat A, Devlin RH, Ackerman PA, Iwama GK, et al. (2000) Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl Environ Microbiol 66: 1928-1932.
54. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46: 605-614.
55. Edgerton M, Raj PA, Levine MJ (1995) Surface-modified poly(methyl methacrylate) enhances adsorption and retains anticandidal activities of salivary histatin 5. J Biomed Mater Res 29: 1277-1286.
56. Tsai H, Bobek LA (1997) Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta 1336: 367-369.
57. Wunder D, Dong J, Baev D, Edgerton M (2004) Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans. Antimicrob Agents Chemother 48: 110-115.
58. Kumar R, Chadha S, Saraswat D, Bajwa JS, Li RA, et al. (2011) Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J Biol Chem 286: 43748-43758.
59. Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274: 18872-18879.
60. Zhang L, Scott MG, Yan H, Mayer LD, Hancock RE (2000) Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry 39: 14504-14514.
61. Masuda M, Nakashima H, Ueda T, Naba H, Ikoma R, et al. (1992) A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II). Biochem Biophys Res Commun 189: 845-850.
62. Powers JP, Martin MM, Goosney DL, Hancock RE (2006) The antimicrobial peptide polyphemusin localizes to the cytoplasm of Escherichia coli following treatment. Antimicrob Agents Chemother 50: 1522-1524.
63. Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, et al. (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32: 275-285.
64. Imjongjirak C, Amparyup P, Tassanakajon A (2011) Two novel antimicrobial peptides, arasin-likeSp and GRPSp, from the mud crab Scylla paramamosain, exhibit the activity against some crustacean pathogenic bacteria. Fish Shellfish Immunol 30: 706-712.
65. Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, et al. (2013) Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region. PLoS One 8: e53326.
66. Yang ST, Yub Shin SY, Kim YC, Kim Y, Hahm KS, et al. (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun 296: 1044-1050.
67. Schibli DJ, Hwang PM, Vogel HJ (1999) Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry 38: 16749-16755.
68. Yang ST, Shin SY, Hahm KS, Kim JI (2006) Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim Biophys Acta 1758: 1580-1586.
69. Wang Z, Wang G (2004) APD: the Antimicrobial Peptide Database. Nucleic Acids Res 32: D590-592.
70. Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, et al. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280: 1448-1456.
71. Gao R, Tao Y, Stock AM (2008) System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids. Mol Microbiol 69: 1358-1372.
72. Hagiwara D, Yamashino T, Mizuno T (2004) A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem 68: 1758-1767.
73. Miller SI, Kukral AM, Mekalanos JJ (1989) A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86: 5054-5058.
74. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, et al. (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461-472.
75. Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 1835-1842.
76. Brodsky IE, Gunn JS (2005) A bacterial sensory system that activates resistance to innate immune defenses: potential targets for antimicrobial therapeutics. Mol Interv 5: 335-337.
77. McPhee JB, Lewenza S, Hancock RE (2003) Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50: 205-217.
78. Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, et al. (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91: 52-57.
79. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R (1997) Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 41: 54-59.
80. Dionysius DA, Grieve PA, Milne JM (1993) Forms of lactoferrin: their antibacterial effect on enterotoxigenic Escherichia coli. J Dairy Sci 76: 2597-2600.
81. Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4: 612-624.
82. Mader JS, Smyth D, Marshall J, Hoskin DW (2006) Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am J Pathol 169: 1753-1766.
83. Ulvatne H, Haukland HH, Olsvik O, Vorland LH (2001) Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett 492: 62-65.
84. Haukland HH, Ulvatne H, Sandvik K, Vorland LH (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508: 389-393.
85. Chen CS, Sullivan S, Anderson T, Tan AC, Alex PJ, et al. (2009) Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol Cell Proteomics 8: 1765-1776.
86. Chen CS, Korobkova E, Chen H, Zhu J, Jian X, et al. (2008) A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods 5: 69-74.
87. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, et al. (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12: 291-299.
88. Zhu X, Gerstein M, Snyder M (2006) ProCAT: a data analysis approach for protein microarrays. Genome Biol 7: R110.
89. Froelich JM, Tran K, Wall D (2006) A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J Bacteriol 188: 1180-1183.
90. Avison MB, Horton RE, Walsh TR, Bennett PM (2001) Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media. J Biol Chem 276: 26955-26961.
91. Murray J, Marusich MF, Capaldi RA, Aggeler R (2004) Focused proteomics: monoclonal antibody-based isolation of the oxidative phosphorylation machinery and detection of phosphoproteins using a fluorescent phosphoprotein gel stain. Electrophoresis 25: 2520-2525.
92. Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25: 2526-2532.
93. Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278: 27251-27255.
94. Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, et al. (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3: 1128-1144.
95. Hayduk EJ, Choe LH, Lee KH (2004) A two-dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining. Electrophoresis 25: 2545-2556.
96. Ge Y, Rajkumar L, Guzman RC, Nandi S, Patton WF, et al. (2004) Multiplexed fluorescence detection of phosphorylation, glycosylation, and total protein in the proteomic analysis of breast cancer refractoriness. Proteomics 4: 3464-3467.
97. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202-208.
98. Gaulton A, Attwood TK (2003) Motif3D: Relating protein sequence motifs to 3D structure. Nucleic Acids Res 31: 3333-3336.
99. Itou H, Tanaka I (2001) The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J Biochem 129: 343-350.
100. Shin D, Groisman EA (2005) Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J Biol Chem 280: 4089-4094.
101. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3: 165-170.
102. Nikel PI, Zhu J, San KY, Mendez BS, Bennett GN (2009) Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. J Bacteriol 191: 5538-5548.
103. Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11: 23-27.
104. Cariss SJ, Tayler AE, Avison MB (2008) Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J Bacteriol 190: 3930-3939.
105. Makino K, Amemura M, Kawamoto T, Kimura S, Shinagawa H, et al. (1996) DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol 259: 15-26.
106. Quigley EM, Quera R (2006) Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probiotics. Gastroenterology 130: S78-90.
107. Takeuchi K, Bjarnason I, Laftah AH, Latunde-Dada GO, Simpson RJ, et al. (2005) Expression of iron absorption genes in mouse large intestine. Scand J Gastroenterol 40: 169-177.
108. Simpson RJ, Peters TJ (1990) Forms of soluble iron in mouse stomach and duodenal lumen: significance for mucosal uptake. Br J Nutr 63: 79-89.
109. Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA (2002) Fe(III)-mediated cellular toxicity. Mol Microbiol 45: 711-719.
110. Leitch GJ, Ceballos C (2009) A role for antimicrobial peptides in intestinal microsporidiosis. Parasitology 136: 175-181.
111. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, et al. (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76: 1143-1152.
112. Cariss SJ, Constantinidou C, Patel MD, Takebayashi Y, Hobman JL, et al. (2010) YieJ (CbrC) mediates CreBC-dependent colicin E2 tolerance in Escherichia coli. J Bacteriol 192: 3329-3336.
113. Gillor O, Giladi I, Riley MA (2009) Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9: 165.
114. Stephenson K, Hoch JA (2002) Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol 2: 507-512.
115. Kenney LJ (2002) Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol 5: 135-141.
116. Shrivastava R, Ghosh AK, Das AK (2007) Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett 581: 1903-1909.
117. Hilliard JJ, Goldschmidt RM, Licata L, Baum EZ, Bush K (1999) Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 43: 1693-1699.
118. Stephenson K, Hoch JA (2004) Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr Med Chem 11: 765-773.
119. Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, et al. (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13: 232-239.
120. Bourret RB Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol 13: 142-149.
121. Yamauchi K, Tomita M, Giehl TJ, Ellison RT, 3rd (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61: 719-728.
122. Orsi N (2004) The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17: 189-196.
123. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73: 472-479.
124. Di Biase AM, Tinari A, Pietrantoni A, Antonini G, Valenti P, et al. (2004) Effect of bovine lactoferricin on enteropathogenic Yersinia adhesion and invasion in HEp-2 cells. J Med Microbiol 53: 407-412.
125. Tian H, Maddox IS, Ferguson LR, Shu Q Influence of bovine lactoferrin on selected probiotic bacteria and intestinal pathogens. Biometals 23: 593-596.
126. de Bortoli N, Leonardi G, Ciancia E, Merlo A, Bellini M, et al. (2007) Helicobacter pylori eradication: a randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. Am J Gastroenterol 102: 951-956.
127. Artym J, Zimecki M (2005) [The role of lactoferrin in the proper development of newborns]. Postepy Hig Med Dosw (Online) 59: 421-432.
128. Tang Z, Yin Y, Zhang Y, Huang R, Sun Z, et al. (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br J Nutr 101: 998-1005.
129. Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276: 6483-6496.
130. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, et al. (2001) Global analysis of protein activities using proteome chips. Science 293: 2101-2105.
131. Natale DA, Shankavaram UT, Galperin MY, Wolf YI, Aravind L, et al. (2000) Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs). Genome Biol 1: RESEARCH0009.
132. Blake JA, Harris MA (2002) The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr Protoc Bioinformatics Chapter 7: Unit 7 2.
133. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109-114.
134. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: D290-301.
135. Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185: 6556-6561.
136. Sun Y, Fukamachi T, Saito H, Kobayashi H (2011) ATP requirement for acidic resistance in Escherichia coli. J Bacteriol 193: 3072-3077.
137. Preston A, Maskell D (2001) The molecular genetics and role in infection of lipopolysaccharide biosynthesis in the Bordetellae. J Endotoxin Res 7: 251-261.
138. Yethon JA, Whitfield C (2001) Lipopolysaccharide as a target for the development of novel therapeutics in gram-negative bacteria. Curr Drug Targets Infect Disord 1: 91-106.
139. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76: 295-329.
140. Bermingham A, Derrick JP (2002) The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24: 637-648.
141. Levy C, Minnis D, Derrick JP (2008) Dihydropteroate synthase from Streptococcus pneumoniae: structure, ligand recognition and mechanism of sulfonamide resistance. Biochem J 412: 379-388.
142. Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE (2011) Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. FEBS Lett 585: 3528-3532.
143. Schnell JR, Dyson HJ, Wright PE (2004) Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu Rev Biophys Biomol Struct 33: 119-140.
144. Benkovic SJ, Fierke CA, Naylor AM (1988) Insights into enzyme function from studies on mutants of dihydrofolate reductase. Science 239: 1105-1110.
145. Penner MH, Frieden C (1987) Kinetic analysis of the mechanism of Escherichia coli dihydrofolate reductase. J Biol Chem 262: 15908-15914.
146. Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, et al. (1996) Antibacterial agents that inhibit lipid A biosynthesis. Science 274: 980-982.
147. Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758: 1408-1425.
148. Viola RE (2001) The central enzymes of the aspartate family of amino acid biosynthesis. Acc Chem Res 34: 339-349.
149. Viola RE, Faehnle CR, Blanco J, Moore RA, Liu X, et al. (2011) The catalytic machinery of a key enzyme in amino Acid biosynthesis. J Amino Acids 2011: 352538.
150. Audia JP, Webb CC, Foster JW (2001) Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291: 97-106.
151. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181: 3525-3535.
152. Hu CJ, Song G, Huang W, Liu GZ, Deng CW, et al. (2012) Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays. Mol Cell Proteomics 11: 669-680. |