博碩士論文 982202031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.16.47.89
姓名 夏敬倫(Ching-Lun Hsia)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A First-Principles Study of Adsorption of an Au Atom and Dimer on a θ-Al2O3/NiAl(100) Surface)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用第一原理方法計算一到兩顆金原子在不同厚度的θ型氧化鋁/鎳鋁合金(100)表面上的吸附特性。我們架構了具有不同氧化鋁厚度(一到五層)的θ型氧化鋁/鎳鋁合金(100)模型,並計算了單一金原子和金分子(兩顆金)在其表面不同位置及不同形貌上的吸附能。金原子趨向於吸附在氧化鋁表面平坦位置的中央,並與表面的鋁原子鍵結。金分子吸附於氧化鋁表面的最穩定形貌則分為兩類:對於二、四、五層厚度的θ型氧化鋁/鎳鋁合金(100)而言,金分子的其中一顆金原子會與表面的氧原子鍵結,而另外一顆則懸吊於空中;對於一、三層厚度的θ型氧化鋁/鎳鋁合金(100)而言,金分子則平躺於表面上[010]方向,並且兩顆金原子皆與表面的鋁原子鍵結。金原子在有鎳鋁合金作為基底的氧化鋁表面上的吸附能,大於在純氧化鋁表面上的吸附能。
我們用了四種方法來討論,這種與氧化鋁層數相關的吸附現象: (1)結構馳豫、(2)功函數縮減、(3)電荷轉移、(4)態密度的移動。每一層的氧化鋁的結構馳豫皆會貢獻於吸附能,尤其是表面氧化鋁的結構馳豫。結構馳豫在吸附能中扮演了重要的角色,但無法解釋其整體的吸附特性。鎳鋁合金基底所造成的功函數縮減,將會增加從氧化鋁基底轉移到金原子或分子的電荷,而電荷轉移的增加將會增強θ型氧化鋁/鎳鋁合金(100)和金吸附物之間的交互作用。金吸附物的能隙縮減和態密度向低能量方向的移動則是另一個造成吸附能提升的原因。
摘要(英) We constructed θ-Al2O3/NiAl(100) models with varied thickness (1 – 5 layers) of Al2O3 slabs on NiAl(100) slabs. We calculated the adsorption and cohesive energies for Aun clusters (n = 1 or 2) in various initial configurations and at various sites on the oxide surface. The most stable configuration for a single Au atom adsorbed on θ-Al2O3/NiAl(100) surface is the Au atom bound to the Al atom at the middle of the flat area. For an Au dimers adsorbed on θ-Al2O3/NiAl(100) surface, two kinds of stable configurations are indicated: on 2-layer, 4-layer and 5-layer θ-Al2O3 on NiAl(100), the dimer adsorbs preferentially with one Au bonded to a surface O and the other dangling, whereas on 1-layer and 3-layer θ-Al2O3 slabs, the dimer lies on the surfaces with the Au-Au bond along [010] direction and with the two Au atoms bound to the Al atoms. The adsorption energies of Au atom on NiAl-supported alumina surfaces are greater than that on pure alumina surface.
These thickness-dependent adsorption properties of Au adsorbed on θ-Al2O3/NiAl(100) are discussed in four origins: (1) structural relaxation, (2) work function reduction, (3) charge transfer, and (4) density of state (DOS) shift. The structural relaxation of every layer of alumina slabs all contribute to adsorption energy. The most significant contribution is from the relaxation of the surface layer. The structural relaxation plays an important role in the adsorption energy but cannot account for all the adsorption properties. The reduction of work function of NiAl-supported alumina surface enhances the charge transfer from substrate to Au atom and dimer, and the charge transfer increases the interaction between substrate and the Aun adsorbate. The reduction of the band gap and the left-shift of DOS of Au adsorbate is another reason to cause the enhancement of adsorption energy.
關鍵字(中) ★ 第一原理
★ 氧化鋁
★ 鎳鋁合金
★ 密度泛函理論
★ 金奈米粒子
關鍵字(英) ★ first-principles
★ Al2O3
★ NiAl
★ DFT
★ Au nanocluster
論文目次 Chapter 1 Introduction 1
Reference of Chapter 1 4
Chapter 2 Literature Survey 6
2.1 The properties of NiAl(100) 6
2.2 θ-Al2O3 thin films growth on NiAl(100) 7
2.3 The studies of metal nanoclusters on metal-oxide surface 9
2.4 The studies of metal nanoclusters on metal-supported oxide films 13
Reference of Chapter 2 23
Chapter 3 Calculational Methods 25
3.1 Thomas-Fermi Model 25
3.2 Born-Oppenheimer Approximation 26
3.3 Hartree-Fock Equation 27
3.4 Hohenberg-Kohn Theorems 29
3.5 Kohn-Sham Approach 31
3.6 Generalized Gradient Approximation 33
3.7 Projector Augmented-Wave Method 34
3.8 Computational details 36
Reference of Chapter 3 42
Chapter 4 Results and Discussion 44
4.1 The structure of θ-Al2O3/NiAl(100) 44
4.2 Adsorption of a single Au atom on the θ-Al2O3/NiAl(100) surface 48
4.3 Adsorption of an Au2 dimer on the θ-Al2O3/NiAl(100) surface 59
Reference of Chapter 4 71
Chapter 5 Conclusion 72
參考文獻 Reference of Chapter 1
[1] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal, 115 , 301, 1989
[2] G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng., 41 , 319, 1999
[3] D. Cameron, R. Holliday, D. Thompson, J. Power Sources, 118 , 298, 2003
[4] M.M. Schubert, S. Hackenberg, A.C.v. Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal., 197 , 113, 2001
[5] M. Valden, X. Lai, D.W. Goodman, Science, 281 , 1647, 1998
[6] L. Giordano, G. Pacchioni, T. Bredow, J.F. Sanz, Surf. Sci., 471 , 21, 2001
[7] A. Vittadini, A. Selloni, J. Chem. Phys., 117 , 353, 2002
[8] Y. Wang, G.S. Hwang, Surf. Sci., 542 , 72, 2003
[9] G. Pacchioni, L. Giordano, M. Baistrocchi, Phys. Rev. Lett., 94 , 226104, 2005
[10] D. Ricci, A. Bongiorno, G. Pacchioni, U. Landman, Phys. Rev. Lett., 97 , 036106, 2006
[11] V. Simic-Milosevic, M. Heyde, N. Nilinus, T. König, H.-P. Rust, M. Sterrer, T. Risse, H.-J. Freund, L. Giordano, G. Pacchioni, J. Am. Chem. Soc., 130 , 7814, 2008
[12] S. Sicolo, L. Giordano, G. Pacchioni, J. Phys. Chem. C, 113 , 16694, 2009
[13] J. Goniakowski, C. Noguera, L. Giordano, G. Pacchioni, Phys. Rev. B, 80 , 125403, 2009
[14] U. Martinez, L. Giordano, G. Pacchioni, Chem. Phys. Chem., 11 , 412, 2010
[15] L. Giordano and G. Pacchioni, Phys. Chem. Chem. Phys., 8, 3335, 2006
[16] A. Bogicevic, D.R. Jennison, Phys. Rev. Lett., 82 , 4050, 1999
[17] N.C. Hernández, J. Graciani, A. Márquez, J.F. Sanz, Surf. Sci., 575 , 189, 2005
[18] V.A. Nasluzov, T.V. Shulimovich, A.M. Shor, V.I. Bukhtiyarov, N. Rösch, Phys. Status Solidi B, 247 , 1023, 2010
[19] P. Hohenberg, W. Kohn, Phys. Rev., 136 , B864, 1964
[20] W. Kohn, L.J. Sham, Phys. Rev.. 140 , 1133, 1965
[21] M.F. Luo, H.W. Shiu, M.H. Tien, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci., 602 , 241, 2008
[22] S.D. Sartale, H.W. Shiu, M.H. Tien, C.I. Chiang, M.F. Luo, Y.C. Lin, Y.J. Hsu, J. Phys. Chem. C, 112 , 2066, 2008
[23] B. W. Chang, J. P. Chou, M. F. Luo, Surf. Sci., 605, 1122, 2011
Reference of Chapter 2
[1] A. J. Bradley and A. Taylor, Proceedings of the Royal Society of London, series A: Math. and Phys. Sci., 159, 56, 1937
[2] L. T. Sein, Jr., S. A. Jansen, Journal of Catalysis, 196, 207, 2000
[3] R. P Blum, D. Ahlbehrendt, and H. Niehus, Surf. Sci., 366, 107, 1996
[4] M. S. Zei, C. S. Lin, M. F. Luo et al., Surf. Sci., 600, 1942, 2006
[5] D.R. Mullins, S.H. Overbury, Surf. Sci., 199, 141, 1988
[6] P. Gassmann, R. Franchy, and H. Ibach, Surf. Sci., 319, 95, 1994
[7] M.F. Luo, C.I. Chiang, H.w.Shiu, S.D. Sartale, and C.C. Kuo, Nanotechnoloty 17, 360, 2006
[8] M. F. Luo, H. W. Shiu , M. H. Tien, S.D. Sartale, et al., Surf. Sci., 602, 241, 2008
[9] Andrea Vittadini, Annabella Sellini, J. Chem. Phys., 117, 353, 2002
[10] B. W. Chang, J. P. Chou, M. F. Luo, Surf. Sci. 605, 1122, 2011
[11] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865, 1996
[12] Y. Wang, G. S. Hwang, Surf. Sci., 542, 72, 2003
[13] V. Simic-Milosevic, M.heyde, N. Nilinus et al., J. Am. Chem. Soc., 130, 7814, 2008
[14] M. C. Valero, P. Raybaud, P. Sautet, Phys. Rev. B,75, 045427 ,2007
[15] C.T. Wang, C.W. Lin, C.L. Hsia, B.W. Chang, M.F. Luo, Thin Solid Films, 520, 3952, 2012
[16] B. Yoon et al., Science, 307, 403, 2005
[17] G. Pacchioni, L. Giordano, and M. Baistrocchi, Physical Review Letter, 94, 226104, 2005
[19] T. T. Magkoev and G. G. Vladimirov, J. Phys.: Condens. Matter, 12, L655, 2001
[20] C. Loppacher, U. Zerweck, and L. M. Eng, Nanotechnology, 15, S9, 2004
[21] M. Pivetta, F. Patthey, M. Stengel, A. Baldereschi, and W. -D.Schneider, Phys. Rev. B, 72, 115414, 2005
[22] L. Giordano, F. Cinquini, and G. Pacchioni, Physical Review B, 73, 045414, 2005
[23] L. Giordano and G. Pacchioni, Phys. Chem. Chem. Phys., 8, 3335, 2006
[24] J. Goniakowski and C. Noguera, Interface Sci., 12, 93, 2004
[25] L. Giordano, M. Baistrocchi and G. Pacchioni, Phys. Rev. B, 72, 115403, 2005
[26] K. H. Kingdom and I. Langmuir, Phys. Rev., 21, 380. , 1923
[27] R. W. Gurney, Phys. Rev., 47, 479, 1935
[28] A. Zangwill, Physics at surfaces, Cambridge University Press, Cambridge, 1988
[29] M. Chiesa, E. Giamello, C. Di Valentin, G. Pacchioni, Z. Sojka and S. Van Doorslaer, J. Am. Chem. Soc., 127, 16935, 2005
Reference of Chapter 3
[1] E. Schrödinger, Physical Review 28, 1049, 1926
[2] L. H. Thomas, Proc. Cambridge Phill. Soc. 23, 542, 1927
[3] E. Fermi, Rend. Accad. Naz. Lincei 6, 602, 1927
[4] P. A. M. Dirac, Proc.Cambridge Phil. Roy. Soc. 26, 376, 1930
[5] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd, Wiley-VCH, 2001
[6] M. Born, R. Oppenheimer, Annalen der physic, 84, 457, 1927
[7] D. R. Hartree, Proc. Cambridge Phil. Soc. , 24, 89, 1928
[8] 謝希德,陸棟,固體能帶理論,二版,復旦大學出版社,2007
[9] V. Fock, Z. Phys. 61, 209, 1930
[10] P. Hohenberg and W. Kohn, Physical Review, 136, 864, 1964
[11] Richard M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge, 2004
[12] W. John and L. J. Sham, Physical Review, 140, 1133, 1965
[13] S. Olszewski, Physical Review, 121, 42, 1961
[14] J. E. Robinson, F. Bassani et al. , Physical Review Letters, 9, 215, 1962
[15] J. P. Perdew, Y. Wang, Physical Review B, 45, 13244, 1992
[16] J. P. Perdew, J. A. Chevary, and S. H. Vosko et al., Phys. Rev. B, 46, 6671, 1992
[17] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865, 1996
[18] F. W. Kutzler and G. S. Painter, Physical Review B, 43, 6865, 1991
[19] D. J. Singh and W. E. Pickett, Physical Review B, 44, 7715, 1991
[20] H. Hellmann, C. R. Acad. Sci. URSS N.S. (Dokl. Akad. Nauk SSSR) 4, 444, 1934
[21] P. E. Blöchl, Physical Review B, 50, 17953, 1994
[22] G. Kresse, J. Furthmüller, Comput.Mater.Sci., 6, 15, 1996
[23] G. Kresse, J. Furthmüller, Phys. Rev. B,54, 11169, 1996
[24] G. Kresse, D. Joubert, Phys. Rev. B, 59, 1758, 1999
[25] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865, 1996
[26] B. W. Chang, J. P. Chou, M. F. Luo, Surf. Sci. 605, 1122, 2011
[27] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci., 319, 95, 1994
[28] A. J. Bradley and A. Taylor, Proceedings of the Royal Society of London, series A: Math. and Phys. Sci., 159, 56, 1937
[29] L. T. Sein, Jr., S. A. Jansen, Journal of Catalysis, 196, 207, 2000
Reference of Chapter 4
[1] A. J. Bradley and A. Taylor, Proceedings of the Royal Society of London, series A: Math. and Phys. Sci., 159, 56, 1937
[2] L. T. Sein, Jr., S. A. Jansen, Journal of Catalysis, 196, 207, 2000
[3] B. W. Chang, J. P. Chou, M. F. Luo, Surf. Sci. 605, 1122, 2011
[4] G. Pacchioni, L. Giordano, and M. Baistrocchi, Physical Review Letter, 94, 226104, 2005
[5] D. Ricci, A. Bongiorno, G. Pacchioni, and U. Landman, Physical Review Letter, 97, 036106, 2006
[6] L. Giordano and G. Pacchioni, Phys. Chem. Chem. Phys., 8, 3335, 2006
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明